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In this paper we discuss the design of a failure detection algorithm based on highly
uncertain probability distributions for the ‘fail’ (F) and ‘no-fail’ (NF) cases. The
structure of the algorithm is that NF is declared if and only if the measurement vec-
tor z falls in a pre-specified domain D. The designer’s task is to choose the domain
D so that the probability of missed detection is less than Py. and the probability of
false alarm is less than P;.. Severe uncertainty in the F and NF prior probabilities is
represented with info-gap models of uncertainty. The design procedure is developed
and the trade-offs between performance (in terms of Py, and P;.) and robustness to
uncertainty are explored. An heuristic example is presented.

I. Theoretical Background

Measurements are made in order to decide whether the measured system is in the no-fail (NF) or fail
(F) state. The measurement vector z is a random variable conditioned on the state of the system: NF or
F. No-fail is declared if and only if x falls in a pre-specified domain D. The best-estimated (but highly
uncertain) probability density functions (pdfs) of z under NF and F are p,(z) and p; (x) respectively. These
estimated pdfs are highly uncertain because of limited data, surprises in operating conditions, variability of
the system, unanticipated effects of failure, etc. We use info-gap models to represent this uncertainty'2. An
info-gap model is an unbounded family of nested sets of uncertain events, in our case, pdfs. The info-gap
models for uncertainty in NF and F are denoted Uo (e, py) and U1 (e, py) respectively.

Many info-gap models are available for representing uncertain pdfs. The choice of an uncertainty model
depends on the available information about the pdfs. A common info-gap model for uncertain pdfs is the
fractional-error model. Let P; denote the set of non-negative and normalized pdfs on the domain of p;(z).
The fractional-error info-gap model for uncertainty in p;(z) is:

Ui(a, ;) = {p(x) : p(x) € Pi, [p(x) —pi(@)| < ap;(x)}, a=0 (1)

The set U;(c, p;) contains all pdfs allowed at horizon of uncertainty «. These uncertainty-sets become more
inclusive as « increases. The horizon of uncertainty, «, is unknown and the info-gap model is an unbounded
family of nested sets of possible pdfs. Since the horizon of uncertainty is unknown and unbounded, there is
no worst case and we cannot perform a min-max analysis.

Given the pdf p(x) for F, the probability of missed detection is:

Po(p) = Pr(z € DIF) (2)
Likewise, given the pdf p(x) for NF, the probability of false alarm is:
Py(p) = Pr(z ¢ DINF) (3)

We would like to choose D so that Py(p) < Py and Pi(p) < Pi.. However, we only know the highly
uncertain estimated pdfs, py(z) and p; ().
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Given performance requirements Py, and Pj., the robustness of decision-domain D to uncertainty in
the estimated pdfs is the greatest horizon of uncertainty « up to which all realizations of the pdfs lead to
adequate performance:

a(D, Pye, Pyc) :max{a: < max Po(p)> < Py, ( max _ Pl(p)> < Plc} (4)

pelts (a,p1) pEUL(x,po)

The robustness function, a(D, Py, Pic), is the basis for evaluating the feasibility of performance requirements
Py and P;. and for choosing the decision-domain D.

The main trade-off property is that robustness decreases as demanded performance increases. That is, for
missed-detection performance, a smaller (better) value of Py entails a smaller (worse) value of the robustness
to uncertainty in the pdf:

Py. < P}, implies a(D, Py, Pic) < a(D, P, Pi.) (5)
A similar relation holds for false-alarm performance:
P < Pllc 1mphes &(D, POcyplc) < a(D7 POC) Pllc) (6)

Furthermore, the robustness vanishes if either of the critical probabilities, Py, or P;., equals the corresponding
estimated probabilites, Py(p;) or Pi(p,) respectively. (Recall from eqs.(2) and (3) that Py(p;) is the best-
estimate of the probability of missed detection, while P;(p,) is the best-estimate of the probability of false
alarm.) Specifically:

a(D,POC,Plc) = 0 lf POC = Po(ﬁl) or lf Plc = Pl(ﬁo) (7)

These quantitative trade-offs, eqs.(5)—(7), enable the designer to evaluate alternative domains D in terms
of their reliability and performance. Specifically, the robustness function a(D, Py, Pi.) induces a preference-
ranking on choices of the decision-domain D. More robustness is better than less robustness, at the same
level of performance. That is, domain D is preferred over domain D’ if the former is more robust at the
same values of Py, and Pi.:

Ds D if &(D,POC,Plc) > a(DI,POC,Plc) (8)

The robust-satisficing domain, at demanded performance Py, and P;., maximizes the robustness:

~

D(POcaplc) = argmgxa(D,POC,Plc) (9)

The robust-satisficing domain may differ from a domain which is optimal with respect to the best-
estimated pdfs. Let D* be a domain which is Pareto optimal in the sense that any change in D* which
reduces (improves) one of the failure probabilities also increases (degenerates) the other. Denote the best-
estimated failure probabilities with D* as:

mo = Po(py, D*), 71 = Pi(py, D¥) (10)

From eq.(7) we know that a(D*,m,m1) = 0, so that performance as good as expected from D* cannot be
relied upon: D* has no immunity to error in the pdfs. A robust-satisficing choice of D, eq.(9), will be one
which achieves adequate (but Pareto-sub-optimal) failure probabilities with maximal immunity to error in
the estimated pdfs.

II. Example: Nominally Exponential Distributions

In this section we develop the robustness function for the special case that the best-estimated pdfs for
the no-fail (NF) and fail (F) conditions are exponential:

pi(z) = Ne ™% =0, 1 (11)
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We will suppose that Ag > A1, meaning that the nominal NF distribution is concentrated more to the left than
the nominal F distribution. The info-gap models for uncertainty in the actual pdfs are the fractional-error
models of eq.(1).

The robustness of eq.(4) is the greatest horizon of uncertainty, «, up to which both failure probabilities
are less than their critical values. Let &;(D, P;.) denote the robustness with respect to criterion ¢ = 0 or
i =1, where j =1 —1:

PEU; (avpj )

a;(D, P;;) = max {a : ( max_ R-(p)) < PZ-C} (12)
The overall robustness is the lesser of these two values:
a(l)apomP)lC) :min{aO(D7POC)7 a5\1(1)7P1C)} (13)

We will derive expressions for ag(D, Po.) and a;1(D, Py.) and study the properties of a(D, Pye, Pic).
Consider a threshold test, so the domain of x values which is declared NF is D = [0, zs]. The designer
must choose z5. Thus egs.(2) and (3), for the probability of missed detection and false alarm, are:

oo

B = [ pwdn )= [ p)ds (14)
0 s
Let Ty, denote the median of p,(x). We will assume that z exceeds the median values of both nominal
distributions: xg > Tom and Ts > T1m.

At horizon of uncertainty o < 1 one can readily show that the inner maximum in the definition of
ao(D, Py.) occurs with the following pdf from U (a, p;):

(1+ a)p; (), if v < T
p() = { (1— aﬁ;(x), it 2> Fim (15)

This is a normalized pdf belonging to U («,p;) which maximizes the probability of missed detection at
horizon of uncertainty «. Using this pdf and equating Py(p) to Py results in:

Py. — Py(py) £ P (5
a TP Po(5y) < Poc
aO(D7POC): { lfpo(pl) 1 0(p1) = 10

0 else

(16)

Likewise, for o < 1, one can readily show that the inner maximum in the definition of a; (D, Pi.) occurs
with the following pdf from U (e, p;):

(]' + O‘)ﬁo(x)» if x Z f()m

ple) = { (1—a)py(x), ifx < Fom (17)

This is a normalized pdf belonging to Uo(«, p,) which maximizes the probability of missed detection at
horizon of uncertainty «. Using this pdf and equating P (p) to Py results in:

Plc_ifjl(po) if Py(py) < Pre < 2Py(py)

ai(D, Pc) = { Pls)po) (18)

else

Values of a1 (D, Pyc) for Pic > 2P (py) require revision of eq.(17). We will not pursue this here.

The robustness curves of eqs.(16) and (18) are shown schematically by the two straight lines in fig. 1,
illustrating the trade-off relations of eqs.(5)—(7): better performance (lower critical failure probability P;.)
entails lower robustness (lower a;(D, P;.)). Furthermore, the best-estimated failure probabilities, Py(p;) and
Py (py), each correspond to zero robustness. The thick lines portray the overall robustness defined in eq.(13).

Fig. 1 also illustrates the choice of the critical probabilities, Py, and P;.. In this figure:

Py(p1) < Pi(po) <1— Po(py) (19)
This implies that the robustness curve for missed detection, &o(D, Py.), is less steep than, and intersects the

horizontal axis to the left of the robustness curve for false alarm, &y (D, Pi.). Recall, from eq.(13), that the
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Figure 1: Schematic robustness Figure 2: Robustness vs. deci-
curves, egs.(16) and (18). sion threshold, showing the robust-

satisficing threshold 7.

overall robustness, a(D, Py, Pic), is the lesser of the two robustnesses shown in fig. 1. For any choice of the
critical probability of false alarm, Pj., the thin lines show the smallest value of the critical probability of
missed detection, Py., which does not reduce the overall robustness.

The positive parts of egs.(16) and (18) can be written explicitly as:

Ao(D, Pye) = 1—(1— Py)eM®s (20)
ai1(D,Py) = Pyet® 1 (21)

For fixed critical probabilities Py. and P, the robust-satisficing choice of x5, which maximizes the robust-
ness as defined in eq.(9), is the value of x5 at which these two expressions are equal. This is illustrated
schematically in fig. 2 where:
Ty = _111(1 7P0c) (22)
A1
In Plc
-

T = (23)
The robustness curves cross if g > x1 which occurs in the common case that 1 — Py, > Pi. and A1 < Ag.
The thick lines constitute the overall robustness according to eq.(13).

This example illustrates the management of severe uncertainty in prior probability distributions, when
designing a fault detection algorithm. When best-estimated failure probabilities are highly unreliable, the
info-gap methodology enables the designer to identify design parameters whose level of performance can be
reliably anticipated.
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