4. Fourier expansion. (p.12) Consider the function:

$$
f(x)=\left\{\begin{array}{rr}
1, & 0<x \leq 1 \tag{6}\\
0, & x=0 \\
-1, & -1 \leq x<0
\end{array}\right.
$$

(a) Express $f(x)$ as a Fourier sine series:

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} c_{n} \sin n \pi x \tag{7}
\end{equation*}
$$

That is, find the Fourier coefficients c_{n}. (Hint: exploit the orthogonality of the sine functions.)
(b) Draw the approximation to $f(x)$:

$$
\begin{equation*}
f_{K}(x)=\sum_{n=1}^{K} c_{n} \sin n \pi x \tag{8}
\end{equation*}
$$

for $K=5,10,20,100$.
(c) Can $f(x)$ be represented as a Fourier cosine series? Explain.

Solution for problem 4. (p.3)

(a) The basic relation is the orthogonality of the sine functions:

$$
\int_{0}^{\pi} \sin m x \sin n x \mathrm{~d} x=\left\{\begin{array}{lll}
0 & , & m \neq n \tag{42}\\
\frac{\pi}{2} & , & m=n
\end{array}\right.
$$

To use this orthogonality relation to find the k th Fourier coefficient, c_{k}, multiply the expansion in eq.(7) by $\sin k \pi x$ on both sides and integrate from -1 to 1 :

$$
\begin{equation*}
\int_{-1}^{1} f(x) \sin k \pi x \mathrm{~d} x=\sum_{n=1}^{\infty} c_{n} \int_{-1}^{1} \sin k \pi x \sin n \pi x \mathrm{~d} x \tag{43}
\end{equation*}
$$

which becomes:

$$
\begin{equation*}
2 \int_{0}^{1} f(x) \sin k \pi x \mathrm{~d} x=2 c_{k} \int_{0}^{1} \sin ^{2} k \pi x \mathrm{~d} x \tag{44}
\end{equation*}
$$

The integral on the left is found to be:

$$
2 \int_{0}^{1} f(x) \sin k \pi x \mathrm{~d} x=\left\{\begin{array}{rcc}
0 & , & k \text { even } \tag{45}\\
\frac{4}{k \pi} & , & k \text { odd }
\end{array}\right.
$$

The integral on the right of eq.(44) is:

$$
\begin{equation*}
2 c_{k} \int_{0}^{1} \sin ^{2} k \pi x \mathrm{~d} x=c_{k} \tag{46}
\end{equation*}
$$

Thus we find the k th Fourier coefficient is:

$$
c_{k}=\left\{\begin{array}{ccc}
0 & , & k \text { even } \tag{47}\\
\frac{4}{k \pi} & , & k \text { odd }
\end{array}\right.
$$

(b) We now are in a position to calculate the truncated approximations to $f(x)$ for $K=5,10,20$ and 100 , as shown in fig. 1.
(c) The square-wave function $f(x)$ in eq.(6) is anti-symmetric with respect to the origin. The cosine functions are all symmetric with respect the origin. Hence $f(x)$ cannot be expanded in cosine functions.

