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14. ‡ Heat conduction. (p.89) Consider an unknown one-dimensional heat source, g(x) [W/m],
distributed along x between +1 and −1. The temperature distribution is T (x) degrees K. The
heat-source density function, g(x), is uncertain and belongs to an info-gap model.

The differential equation for heat conduction is:

0 =
d2T (x)

dx2
+
g(x)

k
(43)

where k is the thermal conductivity, in units of W·m/K.

Safe operation requires that the central temperature be less than a critical value:

T (0) ≤ Tc (44)

We are able to control the surface temperatures, T (±1).

Consider the following two info-gap models.

Uniform bound:
U(h, g̃) = {g(x) : |g(x)− g̃| ≤ h} , h ≥ 0 (45)

Fourier ellipsoid bound:

U(h, g̃) =
{
g(x) = g̃ + cTγ(x) : cTWc ≤ h2

}
, h ≥ 0 (46)

where W is a known, real, symmetric, positive definite matrix and γ(x) is the vector:

γ(x) = (cosπx, cos 2πx, . . . , cosNπx)T (47)

(a) Study the robustness and the opportuneness as a function of surface temperature, for each
of the above info-gap models of heat-source uncertainty. Discuss the meaning of these two
immunity functions. Develop general expressions for the immunity functions and then
consider the special case where W is the following diagonal matrix:

W = diag

(
1

n2
, n = 1, . . . , 6

)
(48)

(b) Now consider a specific numerical case. The material is steel, whose thermal conductivity
is k = 17.3 [W·m/K]. The critical temperature is Tc = 400 [K]. The nominal heat-source
density is g̃ = 250 [W/m]. For each of the info-gap models, what range of surface temper-
ature values are very reliable? Very unreliable? Compare the results for the two info-gap
models.
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Solution for problem 14. (p.10)
Our procedure:

1. Solve eq.(43) to express the temperature at x = 0 as a function of the unknown heat source
term.

2. Derive robustness functions.

3. Derive opportuneness functions.

Part 1 of solution to problem 14.
We must first solve eq.(43) to express the temperature at x = 0 as a function of

the unknown heat source term. This is the mechanical model of the system. We express the
differential equation as:

T̈ (x) = −1

k
g(x) (564)

In terms of differentials this can be written:

d(Ṫ ) = −1

k
g(x)dx (565)

which can be integrated indefinitely as:∫
d(Ṫ ) = −1

k

∫
g(x) dx (566)

which yields:

Ṫ (y) = −1

k

∫
g(x) dx+ c1 (567)

Integrating indefinitely again:∫
dT (y) = −1

k

∫ ∫
g(x) dx dy +

∫
c1 dy (568)

one obtains:

T (y) = −1

k

∫ ∫
g(x) dxdy︸ ︷︷ ︸

A(y)

+c1y + c2 (569)

where A(y) depends on the unknown power distribution g(x).
Evaluate this relation at the two controlled boundardies, y = 1 and y = −1:

T (1) = A(1) + c1 + c2 (570)

T (−1) = A(−1)− c1 + c2 (571)

Solving for the integration constants:

c2 =
T (1) + T (−1)−A(1)−A(−1)

2
(572)

c1 =
T (1)− T (−1)−A(1) +A(−1)

2
(573)

Evaluate eq.(569) at y = 0:

T (0) = A(0) + c2 (574)

= A(0) +
T (1) + T (−1)

2︸ ︷︷ ︸
T

−1

2
A(1)− 1

2
A(−1) (575)
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where T is the mean control temperature.
For example, if g(x) = g0 = constant one finds:

A(y) = −1

k

∫ ∫
g0 dxdy = −1

k

∫
g0y dy = −g0y

2

2k
(576)

In this case, with g(x) = g0 = constant, eq.(575) becomes:

T (0) = T +
g01

2

4k
+
g0(−1)2

4k
(577)

= T +
g0
2k

(578)

Part 2 of solution to problem 14: Robustness function.
The robustness is the greatest horizon of uncertainty at which failure cannot occur:

ĥ = max

{
h :

(
max

g∈U(h,̃g)
T (0)

)
≤ tc

}
(579)

Let us denote the inner maximum by µ(h), which is the inverse of the robustness function.
(a) First consider the uniform-bound info-gap model of eq.(45). From physical reasoning we see

that µ(h) occurs for g(x) = g̃ + h. From eq.(578) we find:

µ(h) = T +
g̃ + h

2k
(580)

Equating to tc and solving for h yields the robustness:

T +
g̃ + h

2k
= tc =⇒ ĥ1 = 2k

(
tc − T

)
− g̃ (581)

or zero if this is negative.
(b) Now consider the Fourier-bound info-gap model for uncertainty in the distribution of the

heat source.
We begin by developing a more convenient expression for A(y) in eq.(569):

A(y) = −1

k

∫ ∫
g(x) dxdy (582)

= −1

k

∫ ∫
[g̃ + cTγ(x)] dx dy (583)

= − g̃
k

∫ ∫
dx dy︸ ︷︷ ︸

I1

−1

k

∫ ∫
cTγ(x) dx dy︸ ︷︷ ︸

I2

(584)

which defines two integrals, I1 and I2. We easily find:

I1 = − g̃
k

∫
y dy = − g̃y

2

2k
(585)

The second integral is:

I2 =

∫ ∫
cTγ(x) dx dy (586)

=
N∑

n=1

cn

∫ ∫
cosnπxdx dy (587)

=
N∑

n=1

cn
− cosnπy

n2π2
(588)

= cT ζ(y) (589)
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where ζ(y) is a vector whose elements are defined in eq.(588). Note that ζ(1) = ζ(−1) because cosine
is a symmetric function.

We can now re-write eq.(584) as:

A(y) = I1 −
1

k
I2 = − g̃y

2

2k
− 1

k
cT ζ(y) (590)

We can now derive an explicit expression for the inner temperature, eq.(575):

T (0) = T +A(0)− 1

2
A(1)− 1

2
A(−1) (591)

= T − 1

k
cT ζ(0)− 1

2

(
− g̃

2k
− 1

k
cT ζ(1)

)
− 1

2

(
− g̃

2k
− 1

k
cT ζ(−1)

)
(592)

= T +
g̃

2k
+

1

k
cT [−ζ(0) + 2ζ(1)]︸ ︷︷ ︸

η

(593)

= T +
g̃

2k
+

1

k
cT η (594)

η is a known vector. From the definition of ζn(y) in eq.(588), we find that the nth element of η is:

ηn =
1

n2π2
(cos 0− 2 cosnπ) =

1

n2π2
(1− 2(−1)n) (595)

We are now prepared to seek the maximum internal temperature. The basic optimization to be
performed is:

max cT η subject to the constraint cTWc = h2 (596)

We use Lagrange optimization. Define:

H = cT η + λ(h2 − cTWc) (597)

The condition for an extremum is:
∂H

∂c
= 0 = η − 2λWc (598)

which implies that an optimizing vector of Fourier coefficients is:

c =
1

2λ
W−1η (599)

The constraint is used to determine the Lagrange multiplier:

h2 =
1

4λ2
ηTW−1η (600)

which implies:
1

2λ
=

±h√
ηTW−1η

(601)

Now the optimizing Fourier vector becomes:

c =
±h√

ηTW−1η
W−1η (602)

Hence the desired maximum is:

max
g∈U2(h,̃g)

cT η = h
√
ηTW−1η (603)

So, the maximum temperature at the midpoint, up to uncertainty h, is:

µ(h) = T +
g̃

2k
+
h

k

√
ηTW−1η (604)
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The robustness is obtained by equating this maximum temperature to the critical temperature tc
and solving for the uncertainty parameter, resulting in:

ĥ2 =
k

(
tc − T − g̃

2k

)
√
ηTW−1η

(605)

unless this is negative, in which case the robustness is zero.
(c) In the special case of the diagonal matrixW of eq.(48) we can easily evaluate the denominator

of eq.(605) to find:
1√

ηTW−1η
≈ 3.0172 (606)

The robustness for the Fourier-ellipsoid uncertainty model is:

ĥ2 = 3.0k
(
tc − T

)
− 1.5g̃ (607)

Both robustness functions have the same units as g̃, the nominal power density. We can calibrate
both robustnesses with respect to g̃ as:

ĥ1
g̃

=
2k
(
tc − T

)
g̃

− 1 (608)

ĥ2
g̃

=
3.0k

(
tc − T

)
g̃

− 1.5 (609)

In either case, if ĥn/g̃ ≫ 1 then the system is immune to power-density fluctuations much greater
than the nominal power density, which suggests a high level of reliability. On the other hand, if
ĥn/g̃ ≪ 1 then power-density fluctuations which are much smaller than the nominal density entail
the possibility of failure so the system is unreliable:

ĥn
g̃

≫ 1 =⇒ high reliability (610)

ĥn
g̃

≪ 1 =⇒ low reliability (611)

We are now in a position to answer the questions: what value of the mean control temperature,
T , insures high reliability, and what value entails high risk?

Let us adopt a value of ĥn/g̃ = 3 as a large value implying high reliability, and a value of
ĥn/g̃ = 1/3 as a small value entailing low reliability.

For the uniform-bound info-gap model we find:

ĥ1
g̃

≥ 3 =⇒ T ≤ 371.1K (612)

ĥ1
g̃

≤ 1

3
=⇒ T ≥ 390.4K (613)

This means that, for the uniform-bound uncertainty model U1(h), a control temperature of 371.1 K
(or lower) assures high reliability while 390.4 K (or higher) entails substantial risk.

Performing the same calculations for the Fourier-ellipsoid model we find:

ĥ2
g̃

≥ 3 =⇒ T ≤ 378.3K (614)

ĥ2
g̃

≤ 1

3
=⇒ T ≥ 391.2K (615)
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Figure 22: Reliable ranges of T for problem 14.

This means that, for the Fourier ellipsoid-bound uncertainty model U2(h), a control temperature of
378.3 K (or lower) assures high reliability while 391.2 K (or higher) entails substantial risk.

We see that the mean control temperatures for the Fourier-ellipsoid info-gap model are shifted to
higher values than for the uniform-bound model.

Part 3 of solution to problem 14: Opportuneness function.
The opportuneness is the least value of the horizon of uncertainty at which the midline temper-

ature can be (though need not be) far below failure:

β̂ = min

{
h :

(
min

g∈U(h,̃g)
T (0)

)
≤ tw

}
(616)

where
tw ≪ tc (617)

(a) First consider the uniform bound. The lowest possible internal temperature, up to uncertainty
h, is:

min
g∈U1(h,̃g)

T (0) = T +
g̃ − h

2k
(618)

Equating the minimum internal temperature to the windfall value tw and solving for h yields the
opportunity:

T +
g̃ − h

2k
= tw =⇒ β̂1 = 2k

(
T − tw

)
+ g̃ (619)

unless this expression is negative, in which case the opportuneness function takes the value zero.
Note that this increases with increasing windfall temperature tw, unlike ĥ which decreases with

increasing critical temperature tc.
Comparing this opportuneness function with the robustness function of eq.(581) on p.90, we

see that these immunity functions are sympathetic: a change in the control temperature which
improves one, also improves the other.

(b) Now consider the Fourier ellipsoid bound. Arguing as in eq.(604), the lowest possible internal
temperature, up to uncertainty h, is:

min
g∈U2(h,̃g)

T (0) = T +
g̃

2k
− h

k

√
ηTW−1η (620)

The opportuneness is obtained by equating this minimum temperature to the windfall temperature
tw and solving for the horizon of uncertainty, resulting in:

β̂2 =
k

(
T +

g̃

2k
− tw

)
√
ηTW−1η

(621)

unless this expression is negative, in which case the opportuneness function takes the value zero.
Solution for problem 15. (p.11)

We first consider the robustness. The displacement at time t in response to input function u(t)
is:

xu(t) =
1

mω

∫ t

0
u(τ) sinω(t− τ) dτ (622)
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=
1

mω

∫ t

0
ũ(τ) sinω(t− τ) dτ︸ ︷︷ ︸

x̃(t)

+
N∑

n=1

ϕn
1

mω

∫ t

0
sin

nπτ

T
sinω(t− τ) dτ︸ ︷︷ ︸

zn

(623)

= x̃(t) + ϕT z (624)

The quadratic failure condition is equivalent to two other conditions:

x2 ≥ Ec ⇐⇒ x ≥
√
Ec or x ≤ −

√
Ec (625)

Consequently, the robustness of design (m, k) with requirement Ec is:

ĥ(m, k,Ec) = max

{
h : max

u∈U(h,ũ)
xu ≤

√
Ec and min

u∈U(h,ũ)
xu ≥ −

√
Ec

}
(626)

So we must find the extreme values of xu up to horizon of uncertainty h. Consider the following
sub-problem:

maxϕT z subject to ϕTWϕ = h2 (627)

Define the objective function:
H = ϕT z + λ(h2 − ϕTWϕ) (628)

Conditions for extrema are:

0 =
∂H

∂ϕ
= z − 2λWϕ =⇒ ϕ =

1

2λ
W−1z (629)

The constraint implies:

h2 =
1

4λ2
zTW−1WW−1z =⇒ 1

2λ
=

±h√
zTW−1z

(630)

Hence the extremizing Fourier coefficients are:

ϕ =
±h√

zTW−1z
W−1z (631)

Thus:
max

u∈U(h,ũ)
ϕT z = ±h

√
zTW−1z (632)

Hence:
max

u∈U(h,ũ)
xu = x̃± h

√
zTW−1z (633)

Hence, provided it is non-negative, the robustness is the greatest h satisfying:

x̃+ h
√
zTW−1z ≤

√
Ec =⇒ ĥ+ =

√
Ec − x̃√
zTW−1z

(634)

and:

x̃− h
√
zTW−1z ≥ −

√
Ec =⇒ ĥ− =

√
Ec + x̃√
zTW−1z

(635)

Hence the robustness is:
ĥ(m, k,Ec) = max

[
0, min(ĥ+, ĥ−)

]
(636)

In fig. 23 we show numerically calculated robustness curves, showing crossing of curves and
reversal of design preference.

We now consider the opportuneness. The performance requirement upon which the robustness
is based is:

−
√
Ec ≤ x ≤

√
Ec (637)
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Figure 23: Robustness curves with problem 15. ω = 1, 1.2, 2. m = 1, ũ(t) = sinωit, ωi = 0.7, T = 5.

That is, we require both of these inequalities to hold when we evaluate the robustness. For the
opportuneness we require either (or both) of the following inequalities to be possible:

−
√
Ew ≤ x ≤

√
Ew (638)

where Ew < Ec. Thus, in analogy to eq.(626), the opportuneness function for design (m, k) with
windfalling aspiration Ew is:

β̂(m, k,Ew) = min

{
h : min

u∈U(h,ũ)
xu ≤

√
Ew or max

u∈U(h,ũ)
xu ≥ −

√
Ew

}
(639)

Hence, provided it is non-negative, the opportuneness is the least h satisfying:

x̃− h
√
zTW−1z ≤

√
Ew =⇒ β̂+ =

x̃−
√
Ew√

zTW−1z
(640)

or:

x̃+ h
√
zTW−1z ≥ −

√
Ew =⇒ β̂− =

−
√
Ew − x̃√

zTW−1z
(641)

Hence the opportuneness is:

β̂(m, k,Ec) = max
[
0, min(β̂+, β̂−)

]
(642)




