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1 Thickness Measurement: Testing a Sample Mean

¶ In the first few sections we illustrate various statistical hypothesis tests for acceptance
testing.

¶ Suppose we measure the thickness of a plate at N widely separated points: x1, . . . , xN .

These measurements differ from one another due to random measurement error, as well
as fluctuations in the local thickness.

How do we use these measurements to decide if the plate “really” has thickness T?

What does “really has thickness T ” mean? Perhaps: E(T ) = µ.

¶ A random sample is a set of independent measurements made on the same population.
That is, a random sample is a set of independent and identically distributed (i.i.d.) random
variables.

¶ The sample mean of a random sample is defined as:

x =
1

N

N∑
i=1

xi (1)

Theorem 1. If a random sample of size N is taken from a population with mean µ and
variance σ2, then the sample mean x has mean µ and variance σ2/N . That is:

E(x) = µ (2)

var(x) = E
(
[x− E(x)]2

)
=

σ2

N
(3)

Proof. First consider eq.(2):

E(x) = E

(
1

N

N∑
i=1

xi

)
=
∫
x1...xN

p(x1, . . . , xN)
1

N

N∑
i=1

xi dx1 · · · xN (4)

Because the measurements of the random sample are independent:

p(x1, . . . , xN) =
N∏
i=1

p(xi) (5)

Thus:

E(x) =
1

N

N∑
i=1

∫
p(xi)xi dxi =

1

N

N∑
i=1

µ = µ (6)

Which completes the proof of eq.(2). Note that this is independent of p(xi).
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Now consider eq.(3):

var(x) = E[(x− µ)2] = E

( 1

N

N∑
i=1

(xi − µ)

)2
 (7)

=
1

N2

∑
i

∑
j

E [(xi − µ)(xj − µ)] (8)

=
1

N2

∑
i

E(xi − µ)2 =
σ2

N
(9)

Note that this is independent of p(xi).

Review exercise 1, p. 54.

Review exercise 2, p. 54.

Theorem 2. If a random sample is taken from a normal population, then the sample mean
is normal.

Combining the last two theorems we can assert:

xi ∼ N (µ, σ2) =⇒ x ∼ N (µ, σ2/N) (10)

Review exercise 3, p. 54.

“Theorem” 3. An approximate statement of the central limit theorem: The sample mean
of a random sample will be approximately normal for large sample size (N > 30, rough
number).

Review exercise 4, p. 54.

¶ So, let us suppose that the thickness measurement is normally distributed, or that the
number of measurements is large. Thus:

x ∼ N (µ, σ2/N) (11)

where:
µ = true mean thickness.
σ2 = variance of the thickness measurements.
N = sample size.

Also, assume that we know the value of σ2.

¶ How do we decide whether:
◦ The true thickness of the plate is T?
◦ To accept or reject the plate?
We use an hypothesis test.
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¶ The null hypothesis:
H0 : µ = T (12)

T = desired thickness: a known value.
µ = true thickness: an unknown value.

¶ The alternative hypothesis:
H1 : µ ̸= T (13)

This is a two-tailed test. The test would be one-tailed if the alternative hypothesis were:

H1 : µ > T (14)

Or:
H1 : µ < T (15)

Review exercise 5, p. 54.

¶ Level of confidence, α:
• Probability of obtaining a result at least as extreme

as the observed result, conditioned upon H0.
• Probability of rejecting H0 erroneously.

For the two-tailed test in question (see fig. 1 on p.5):

α = Prob

|x− T | ≥ |xo − T |

∣∣∣∣∣∣H0

 (16)

x = the random variable “sample mean”.
xo = the observed value of the random variable x.

Review exercise 6, p. 54.

-

6

T

p(T |H0)

T + |x0 − T |T − |x0 − T |
α/2α/2

x

Figure 1: Sketch of probability density, illustrating the level of confidence in eq.(16).

¶ Interpreting the level of confidence:
If α is small: reject H0.
If α is large: accept H0.



reltest\acctes.tex ACCEPTANCE TESTING 6

¶ How to evaluate the level of confidence?

Conditioned upon H0, we can assert:

x ∼ N (T, σ2/N) (17)

x can be standardized as:
z =

x− T

σ/
√
N

∼ N (0, 1) (18)

Review exercise 7, p. 54.
Now the level of confidence can be expressed as (see fig. 2 on p.6):

α = Prob

|x− T | ≥ |xo − T |

∣∣∣∣∣∣H0

 (19)

= Prob

 |x− T |
σ/

√
N

≥ |xo − T |
σ/

√
N

∣∣∣∣∣∣H0

 (20)

= 2

[
1− Φ

(
|xo − T |
σ/

√
N

)]
(21)

where Φ(·) is the cdf of the standard normal distribution. Define:

zo =
|xo − T |
σ/

√
N

(22)

α = 2[1− Φ(zo)] (23)

-

6

0

p(z)

|z0|−|z0|
α/2α/2

z

Figure 2: Sketch of probability density illustrating level of confidence in eq.(21).

¶ Numerical example.
Measurements: 1.3, 1.2, 1.4, 1.3, 1.1
Desired thickness: T = 1.36.
Known variance: σ2 = 0.01 =⇒ σ = 0.1.

Hence: N = 5 and xo = 1.26.

zo =
1.26− 1.36

0.1/
√
5

= −2.236 (24)
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α = Prob

|z| ≥ |zo|

∣∣∣∣∣∣H0

 = 2 [1− Φ(|zo|)] = 0.024 (25)

• Note: Φ(|zo|) = 0.988.

• So, the probability of getting a value as large or larger than the observed standardized
sample mean is 0.024.

• This is rather small, so we tend to reject H0.
If so, then we reject H0 at the 0.024 level of confidence.

• Similarly, 0.024 = probability of falsely rejecting H0.

¶ We tested H0 on p. 5 under the assumption that σ2 is known.

• What do we do if σ2 is unknown?

• We will assume that the sample is normal.

¶ Two cases:
N large.
N small.

¶ Case 1: N large.
If N ≥ 25 (rough number), then s2, the sample variance, is a good estimate of the true
population variance.

s2 =
1

N − 1

N∑
i=1

(xi − x)2 (26)

We can now assume, conditioned on H0, that:

t =
x− T

s/
√
N

∼ N (0, 1) (27)

This assumption would be precise if s2 = σ2.
Now we proceed with the test as before.

Review exercise 8, p. 54.

¶ Case 2: N small.
If N < 25 (rough number), then the sample variance s2 is not a good estimate of the
population variance.
The statistic:

t =
x− T

s/
√
N

(28)

is broader than N (0, 1) since both x and s display variation.
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This is a t statistic with N − 1 degrees of freedom (dofs).
Recall we assumed the sample is normal.

¶ We repeat the numerical example, without knowledge of σ2.
Measurements: 1.3, 1.2, 1.4, 1.3, 1.1
Desired thickness: T = 1.36.
N = 5 and xo = 1.26.
Sample variance: s2 = 0.013 =⇒ s = 0.1140.

The observed t statistic is:

to =
x− T

s/
√
N

=
1.26− 1.36

0.1140/
√
5
= −1.961 (29)

The dofs: 5− 1 = 4.
There are many stats tables on the web. Mostly they are reliable, though I once found an
erroneous table. This table seems fine:
http://www.stats.gla.ac.uk/~levers/software/tables/tables-uog.pdf

From a different table of the t distribution (transparency AS-p.7.1):

α = 0.1 0.05 0.025 0.01
ν = 4 : 1.533 2.132 2.776 3.747

So, with 4 dofs:
The probability of t4 exceeding 1.533 is 0.1.
The probability of t4 exceeding 2.132 is 0.05.
Etc.

The level of confidence of this two-tailed test, with to = −1.961, is:

α = Prob

|t| ≥ |to|

∣∣∣∣∣∣H0

 ≈ 2× 0.07 = 0.14 (30)

This is not small, so we cannot reject H0.
The probability of falsely rejecting H0 is 0.14.
Review exercise 9, p. 54.



reltest\acctes.tex ACCEPTANCE TESTING 9

2 Sequential Sampling: Testing a Mean

¶ In the previous example we found that, with 5 measurements, we reject H0 at 0.14 level
of confidence.
This rejection is not very convincing. Review exercise 10, p. 54.
If we measured more, we could probably make a better, more confident decision.
How many measurements to make?
One approach is the idea of sequential sampling:

Continue adding measurements until the level of confidence is clear cut.
The following table shows an example.

N xi x s2 s/
√
N |to| α

5 1.3, 1.2, 1.4, 1.3, 1.1 1.26 0.013 0.0510 1.961 2× 0.07 = 0.14
8 1.1, 1.3, 1.2 1.2375 0.01125 0.0375 3.267 2× 0.007 = 0.014
11 1.1, 1.2, 1.1 1.2091 0.01091 0.0315 4.7915 < 0.002

Table 1: Data from a sequential test of the mean thickness measurement. (Transparency)

After 11 measurements we can stop:
Our confidence in rejecting H0 is great.

Review exercise 11, p. 54.

¶ General theory: sequential analysis.1

1Abraham Wald, Sequential Analysis.
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3 Matching Two Dimensions: Testing Two Sample Means

¶ Let us suppose that we are measuring two dimensions, to see if they match. For instance,
the inner and outer dimensions of pieces that need to fit together.

These two dimensions are measured repeatedly, with a measuring device which has ran-
dom errors:

◦ The random sample of the inner dimension is: x1, . . . , xN .
◦ The random sample of the outer dimension is: y1, . . . , yM .

We need not assume that the sample sizes, N and M are the same.

The true mean values of these two samples, which are the true dimensions, are:
µ1 = true (but unknown) inner dimension.
µ2 = true (but unknown) outer dimension.

¶ We assume that these two samples each have the same known variance σ2.

Will the pieces fit snugly?

How confident are we of the answer?
In other words, we wish to test the null hypothesis:

H0 : µ1 = µ2 (31)

against one of the following alternative hypotheses:

H1 : µ1 ̸= µ2 (32)

or:
H1 : µ1 > µ2 (33)

or:
H1 : µ1 < µ2 (34)

We choose an alternative hypothesis depending upon our prior information.

Review exercise 12, p. 54.

Let x and y be the sample means:

x =
1

N

N∑
i=1

xi, y =
1

M

M∑
i=1

yi (35)

Consider the statistic:
∆ = x− y (36)

What is the mean and variance of ∆, if H0 holds? If H1 holds?
Note that we cannot answer this question under H1.



reltest\acctes.tex ACCEPTANCE TESTING 11

Review exercise 13, p. 54.

E(∆) = E(x− y) = E(x)− E(y) = 0 (37)

var(∆) = var(x− y) = var(x) + var(y) =
σ2

N
+

σ2

M︸ ︷︷ ︸
σ2
∆

(38)

In eq.(38) we have used the fact that x and y are statistically independent because they are
means of separate random samples:

var(x− y) = E

[(
x− y − [E(x− y)]

)2
]

(39)

= E

[(
x− E(x)

)2
]
− 2E

[(
x− E(x)

)(
y − E(y)

)]
+ E

[(
y − E(y)

)2
]

(40)

= E

[(
x− E(x)

)2
]
+ E

[(
y − E(y)

)2
]

(41)

= var(x) + var(y) (42)

How is ∆ distributed if H0 is true?
If we assume either of the following:

◦ The samples are large, or
◦ The measurements are normally distributed.

Then, in either case:
∆ ∼ N (0, σ2

∆) (43)

or equivalently:
∆

σ∆

∼ N (0, 1) (44)

Review exercise 14, p. 54.

Assume either normality or large samples, and define:

z =
∆

σ∆

(45)

If H0 holds, then:
z ∼ N (0, 1) (46)

Review exercise 15, p. 54.

Using the two-sided alternative hypothesis of eq.(32) on p.10, we formulate the level of
confidence as (fig. 3, p.12):

α = Prob

|z| ≥ |zo|

∣∣∣∣∣∣H0

 (47)
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-

6

0

p(T )

|z0|−|z0|
α/2α/2

z

Figure 3: Sketch of probability density illustrating level of confidence in eq.(47).

Or, if we use the 1-sided alternative hypothesis of eq.(33), the level of confidence becomes
(fig. 4, p.12):

α = Prob

z ≥ zo

∣∣∣∣∣∣H0

 (48)

-

6

0

p(T )

z0

α
z

Figure 4: Sketch of probability density illustrating level of confidence in eq.(48).

In the 2-tailed case we obtain:
α = 2 [1− Φ(zo)] (49)

In the 1-tailed case we obtain:
α = 1− Φ(zo) (50)
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4 Engine Warming: A χ2 Test

¶ We use an example to introduce the idea of a χ2 hypothesis test.

¶ The temperature of an operating engine fluctuates between “warm” and “hot”. For normal
operation the engine should be “hot” a fraction ph = 0.15 of the time.

Maintenance records since the last overhaul of the engine show that the engine was “warm”
at Nw = 162 and “hot” at Nh = 44 statistically independent sample instants.

Nh

Nh +Nw

=
44

206
≈ 0.21 (51)

Is the engine operating properly?

Review exercise 16, p. 54.

¶ The χ2 test for categorical data is suitable for addressing this question.

We formulate the χ2 test as follows.
Given:

◦ K types of outcomes of an ‘experiment.’
◦ ni outcomes of type i, i = 1, . . . , K.
◦ N =

∑K
i=1 ni = total number of outcomes.

Null Hypothesis:

H0 : pi = probability of type i outcome, i = 1, . . . , K (52)

where p1, . . . , pK are known values.
The alternative hypothesis, H1, is simply: H0 is false. That is, at least one of the probabilities
in H0 is wrong.
The χ2 statistic is:

χ2 =
K∑
i=1

(ni −Npi)
2

Npi
(53)

Explanation:
◦ The numerator is a prediction-error for type-i outcomes.
◦ We expect χ2 to be small if H0 is correct.

Theorem 4: If N is large and if H0 is true, then the statistic in eq.(53) is approximately a χ2

random variable with K − 1 dofs.

¶ The χ2 distribution is shown in fig. 5, p.14, for several values of the dof.

¶ How does one calculate the level of confidence, α?

• Recall:
◦ α is the probability, conditioned upon the null hypothesis, of obtaining a value more
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Figure 5: Chi squared distributions. Hines and Montgomery, p.232.

extreme than the observed statistic.
◦ α = probability of falsely rejecting H0.

Hence, let χ2
o be the observed value of the χ2 statistic of eq.(53). The level of confidence is:

α = Prob

χ2 ≥ χ2
o

∣∣∣∣∣∣H0

 (54)

α = ‘small’ =⇒ χ2
o = ‘extreme’ =⇒ Reject H0.

α = ‘large’ =⇒ χ2
o = ‘not extreme’ =⇒ Accept H0.

‘Small’ and ‘Large’ are understood from the natural calibration of probability: from 0 to 1.

-

6

0

p(χ2
0)

χ2
0

α
χ2

Figure 6: Level of confidence in eq.(54)

¶ Let us apply this theorem to our example.
K = 2: 2 possible states: ‘hot’ and ‘warm’.
Nw = 162, Nh = 44, N = 206.
H0: ph = 0.15, pw = 0.85.
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χ2
o =

(162− 206× 0.85)2

206× 0.85
+

(44− 206× 0.15)2

206× 0.15
= 6.533 (55)

DOFs = 2− 1 = 1.
χ2 table (see the table on p.15):

α = 0.05 0.025 0.01
ν = 1 : 3.84 5.02 6.63

From this we see that α ≈ 0.01.
So, we reject H0 at the 1% confidence level.
In other words, the evidence is strong that the engine is running ‘hot’.

Review exercise 17, p. 54.

Chi-Square Distribution Table

2χ0

The shaded area is equal to α for χ2 = χ2

α
.

df χ2

.995
χ2

.990
χ2

.975
χ2

.950
χ2

.900
χ2

.100
χ2

.050
χ2

.025
χ2

.010
χ2

.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169

Figure 7: Chi squared table.
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5 Failure Rate: Poisson Distribution and the χ2 Test

¶ A computer controlled milling machine operates automatically except when jamming, tool
breakage or other failures occur. Under normal circumstances these failures occur at a
rate of about 1 or 2 per day. Also, the distribution in time of the failures is thought to be a
Poisson process: (1) constant average failure rate; (2) events occur independently.
¶ Data have accumulated over a 50-day period for this machine. In this time 75 failures
occurred, so the average failure rate is:

λ =
75 failures
50 days

= 1.5
failures

day
(56)

Furthermore, we know how many days had 0, 1, 2 and 3 or more failures:

Failures/day, i # days, ni # failures, pi
0 12 0
1 17 17
2 9 18

3+ 12 40
Totals: 50 75

Table 2: Failure data.

¶ We want to test the hypothesis: the distribution over time of failures is described by a
Poisson process.

Recall the Poisson distribution:
Pi = probability of exactly i failures in a single day.

Pi =
e−λλi

i!
, i = 0, 1, 2, . . . (57)

¶ We can use a χ2 test to test this hypothesis.
First define some notation:
N = total number of days.
pi = Pi, the Poisson distribution in H0, for i = 0, . . . , 2.
p3 =

∑∞
i=3 Pi.

ni = observed number of days with i failures, i = 0, . . . , 3.

Npi = expected number of days with i failures, i = 0, . . . , 3.

Now the null hypothesis is:
H0: distribution of failures is pi with λ = 1.5/day.
H1: H0 is wrong.

¶ The χ2 statistic is:

χ2
o =

3∑
i=0

(ni −Npi)
2

Npi
= 1.695 (58)
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The DOFs:
DOF = 4︸︷︷︸

catagories
− 1︸︷︷︸

normalization
− 1︸︷︷︸

estimating λ

= 2 (59)

¶ Recall the pth quantile with ν DOFs, χ2
(ν),p:

p = Prob
(
χ2
(ν) ≤ χ2

(ν),p

)
(60)

From a χ2 table, the p-quantiles for ν = 2 are:

p = 0.5 0.6
χ2
(2),p = 1.386 1.833

From this table we see that the level of confidence, with χ2
o = 1.695, is:

α = Prob

χ2 ≥ χ2
o

∣∣∣∣∣∣H0

 ≈ 1− 0.55 = 0.45 (61)

This is very large, so we accept H0: the distribution of failures is Poisson.

¶ Now consider a different machine, for which the data are:

Failures/day, i # days, ni # failures, pi
0 15 0
1 13 13
2 8 16

3+ 14 46
Totals: 50 75

Table 3: Failure data.

As before, the average failure rate is:

λ = 1.5
failures

day
(62)

With these results the observed χ2 value is:

χ2 = 5.86 (63)

With 2 DOFs, this implies that the level of confidence is:

α = Prob

χ2 ≥ χ2
o

∣∣∣∣∣∣H0

 ≈ 0.06 (64)

This is rather small, so we reject H0: the distribution of failures is not Poisson.

Some factor is causing either:
◦ Variation in the average failure rate.
◦ Failure inter-dependence.

In short: clustering of failures.
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6 χ2 Test of Independence in a 2-way Table

¶ Consider the following situation:
Two different systems are used to perform a particular mission. Records indicate the num-
ber of failed and successful missions:

Successful Failed Total
Missions Missions Missions

System 1 86 35 121
System 2 64 37 101

Total 150 72
Missions

Table 4: Data on successes and failures of two systems.

¶ Question:
Is there solid evidence for the contention that system 1 is more reliable than system 2?

In other words, are the rows and columns of the table dependent?
That is, by choosing the row (system), do I have sound evidence that I significantly influ-
ence the column (success or failure) in which I “fall”?

We can use the χ2 test to evaluate the evidence.
¶ First we must formulate the null hypothesis.
pij = probability of an event in row i, column j.
pi• = probability of an event in row i.
p•j = probability of an event in column j.

The null hypothesis states:
There is statistical independence between rows and columns.

That is:
H0 : pij = pi•p•j (65)

The alternative hypothesis states that H0 is false.

¶ Now we can formulate the χ2 statistic. Define:
nij = number of events in row i and column j.
r = number of rows.
c = number of columns.
N = total number of events =

∑r
i=1

∑c
j=1 nij.

The χ2 statistic is calculated as:

χ2 =
r∑

i=1

c∑
j=1

(nij −Npi•p•j)
2

Npi•p•j
(66)
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The level of confidence is the probability of χ2 obtaining a value greater than the observed
value, χ2

o, conditioned on H0:

α = Prob

χ2 ≥ χ2
o

∣∣∣∣∣∣H0

 (67)

¶ A difficulty: in our example we don’t know the values of pi• and p•j, so we can’t calculate
χ2
o.

Solution: estimate pi• and p•j from the data: nij:

p̂i• =
ni•

N
, p̂•j =

n•j

N
(68)

where:
ni• = sum of ith row.
n•j = sum of jth column.

¶ How many DOFs do we have?
DOF = number of categories − number of constraints.
The number of categories is rc.
3 types of constraints:
Type 1. 1 constraint (normalization):

r∑
i=1

c∑
j=1

nij = N (69)

Type 2. r − 1 constraints:
Estimate p̂1•, . . . , p̂r−1•.(
p̂r• = 1−∑r−1

i=1 p̂i•
)
.

Type 3. c− 1 constraints:
Estimate p̂•1, . . . , p̂•c−1.(
p̂•c = 1−∑c−1

j=1 p̂•j
)
.

So the number of DOFs is:

DOF = rc− 1− (r − 1)− (c− 1) = (r − 1)(c− 1) (70)

¶ Now the observed statistic can be calculated as:

χ2
o =

r∑
i=1

c∑
j=1

(nij −Np̂i•p̂•j)
2

Np̂i•p̂•j
(71)

¶ In our numerical example we have:
n11 = 86, n12 = 35, n1• = 121



reltest\acctes.tex ACCEPTANCE TESTING 20

n21 = 64, n22 = 37, n2• = 101

n•1 = 150, n•2 = 72, N = 222

Hence the estimated probabilities are:

p̂1• =
n1•

N
= 0.545, p̂2• =

n2•

N
= 0.455 (72)

p̂•1 =
n•1

N
= 0.676, p̂•2 =

n•2

N
= 0.324 (73)

The observed statistic becomes:
χ2
o = 1.493 (74)

And the number of DOFs is:

DOF = (2− 1)(2− 1) = 1 (75)

Is 1.493 large or small? Should we accept or reject H0?

We need to calibrate χ2
o using the quantile values of the χ2 distribution with 1 DOF.

Define:
χ2
(ν) = χ2 random variable with ν DOFs.

χ2
(ν),p = pth quantile of χ2

(ν): fig. 8.
χ2
(ν),p is defined in:

p = Prob
(
χ2
(ν) ≤ χ2

(ν),p

)
(76)

-

6

0

p(χ2
(ν))

χ2
(ν),p

p

χ2
(ν)

Figure 8: pth quantile of χ2
(ν), eq.(76)

From a χ2 table, the p-quantiles for ν = 1 are:

p = 0.75 0.80
χ2
(1),p = 1.323 1.642

From this table we see that:

Prob
(
χ2
(1) ≥ 1.323

)
= 1− 0.75 = 0.25 (77)

Prob
(
χ2
(1) ≥ 1.642

)
= 1− 0.80 = 0.20 (78)

So, since χ2
o = 1.493 we see that:

α ≈ 0.22 (79)
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We cannot reject H0 at 0.2 level of confidence.
So we accept H0:

◦ Columns and rows are independent.
◦ The two systems are not significantly different in reliability.

Review exercise 18, p. 54.

¶ Suppose we have many more observations, but in the same ratios as table 4, p.18.

• See “big sample” data in table 5.

Successful Failed Total
Missions Missions Missions

System 1 8600 3500 12100
System 2 6400 3700 10100

Total 15000 7200
Missions

Table 5: Big-sample data on successes and failures of two systems.

• From eq.(68), p.19, we see that p̂ij does not change.

• However, Nbig = 100Nsmall and nij,big = 100nij,small.

• Thus, from eq.(66), p.18: χ2
big,obs = 100χ2

small,obs = 149.3 with same DOF.

• Hence: αbig,obs ≪ 0.001 and we now reject H0 very strongly.
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7 Acceptance Sampling of a Large Population

¶ We have a large batch of items, among which an unknown fraction p are defective. We
wish to sample this population to decide whether or not to accept the batch.

¶ Define:
N = sample size.
pa = acceptable proportion of defective items.
pu = unacceptable proportion of defective items.

pu > pa (80)

pa and pu can be interpreted:
◦ We desire the defective fraction to be no greater than pa.
◦ We are willing to live with a defective fraction as large as pu.

Review exercise 19, p. 55.

p = true but unknown fraction of defective items in the batch.
PA = probability of accepting the batch.

¶ Our algorithm for accepting or rejecting the batch is:
Accept if and only if:

number of defective items in sample
sample size

≤ pa (81)

¶ Two types of errors can be made:
I. Acceptance with p > pu. Bad acceptance.
II. Rejection with p < pa. Bad rejection.

Review exercise 20, p. 55.

¶ How do we calculate PA, the probability of acceptance?

Assume that N ≪ batch size. Thus the sample does not significantly change the composi-
tion of the population.

¶ Binomial distribution:
b(i; p,N) = probability of exactly i defectives in a sample of size N .

b(i; p,N) =

(
N
i

)
pi(1− p)N−i,

(
N
i

)
=

N !

i!(N − i)!
(82)

Review exercise 21, p. 55.
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¶ Acceptance probability:

PA =
paN∑
i=0

b(i; p, n) (83)

=
paN∑
i=0

(
N
i

)
pi(1− p)N−i (84)

¶ Example. Suppose:
N = 100.
pa = 0.01
Hence:
paN = 1

PA =
1∑

i=0

b(i; p, 100) = (1− p)100 + 100p(1− p)99 (85)

A plot of PA vs. p reveals the probabilities of type I and type II errors.

-

6

0 0.02 0.04 0.06

1.0

0.8

0.6

0.4

0.2

0.0

PA

p

Figure 9: Acceptance probability in eq.(85)

Recall that:
pa = max “acceptable” fraction of defectives.
pu = max “tolerable” fraction of defectives.

¶ Type I errors:
Acceptance with p > pu. Bad acceptance.

The probability of a type I error is called the consumer’s risk: (fig. 10, p.24)

PI = PA(p = pu) (86)

¶ Type II errors:
Rejection with p < pa. Bad rejection.

The probability of a type II error is called the producer’s risk: (fig. 10, p.24)

PII = 1− PA(p = pa) (87)
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Review exercise 22, p. 55.

When we are designing a sampling scheme, we can evaluate it with 2 pairs of numbers:
(pu, PI), (pa, PII)

-

6
6

?

pa

PII = producer’s risk (bad rejection)

6

?

pu

PI = consumer’s risk (bad acceptance)

0 0.02 0.06

1.0

0.8

0.6

0.4

0.2

0.0

PA

p

Figure 10: Illustration of type I and type II errors in eqs.(86) and (87) using eq.(85) (N =
100). pa = 0.01, pu = 0.04.

¶ Example. Consider PA(p) in eq.(85) on p.23.
Choose pa = 0.01 and pu = 0.04.

With N = 100, we have: paN = 1:
Consumer’s risk: PI = PA(p = pu) = 0.0872.
Producer’s risk: PII = 1− PA(p = pa) = 1− 0.736 = 0.264.

With N = 200, we have: paN = 2:

PA =
2∑

i=0

b(i; p, 100) = (1− p)200 + 200p(1− p)199 +
(200)(199)

2
p2(1− p)198 (88)

Consumer’s risk: PI = PA(p = pu) = 0.0125.
Producer’s risk: PII = 1− PA(p = pa) = 1− 0.677 = 0.323.

Review exercise 23, p. 55.

By increasing the sample size we:
◦ Increased the producer’s risk: 0.264 → 0.323.
◦ Decreased the consumer’s risk: 0.0872 → 0.0125.

¶ At N → ∞ we expect rectangular PA vs. p:
Consumer’s risk: PI = PA(p = pu) = 0.
Producer’s risk: PII = 1− PA(p = pa) = 0.

For finite N , PA(p) oscillates with N , as a result of the discrete, binary nature of the distri-
bution.
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-
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Figure 11: Asymptotical acceptance probability, N → ∞.

Review exercise 24, p. 55.
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8 Sample Size for Detecting a Change: Threshold Tests

Source material: David R. Fox, Yakov Ben-Haim, Keith R. Hayes, Michael McCarthy, Bren-
dan Wintle, Piers Dunstan, 2007, An info-gap approach to power and sample size calcula-
tions, Environmetrics, vol. 18, pp.189–203.

8.1 Sample Size and Error Probabilities

-

g(x) g(x− δ)

x

Figure 12: Pdf’s g(x) and g(x− δ) shifted to the right by δ.

¶ The dispute.
• x is the measurement of the output of a system.
• One side argues: x has not changed, its mean is µ0 and its pdf is g(x).
• The other side argues: x has changed, its mean is µ1 = µ0 + δ and its pdf has shifted

to g(x− δ).
• δ > 0 means that g(x− δ) is shifted to the right of g(x).
• δ is the “effect size”: the shift in the distribution of x.

Review exercise 25, p. 55.

• Null and alternative hypotheses:

H0 : x ∼ g(x) (89)

H1 : x ∼ g(x− δ) (90)

¶ The question: How large a sample is needed to confidently resolve the dispute?

¶ Random sample.
• A random sample of x-values is taken. n = sample size.
• x = sample mean. fn(x) is the pdf of the sample mean.
• fn(x) may differ from g(x). E.g., large n implies fn(x) is normal regardless of g(x).
• Null and alternative hypotheses:

H0 : x ∼ fn(x) (91)

H1 : x ∼ fn(x− δ) (92)

• δ > 0 means that fn(x− δ) is shifted δ to the right of fn(x).
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¶ Example: Normal distribution:

x ∼ N (µ, σ2) implies x ∼ N (µ, σ2/n) (93)

Review exercise 26, p. 55.

• Hence the null and alternative hypotheses are:

H0 : x ∼ N (µ, σ2/n) (94)

H1 : x ∼ N (µ+ δ, σ2/n) (95)

• The pdf of the sample mean depends on the sample size.

¶ Critical value, C:
• Reject H0 iff x > C.
• C depends on the sample size.

¶ Errors:
• Type I error: false rejection of H0.
• Type II error: false rejection of H1.

-

fn(x) fn(x− δ)

C

Type IType II
x

Figure 13: Pdf’s for H0 and H1, illustrating type-I and type-II errors.

¶ Error Probabilities:
• α = probability of falsely rejecting H0:

α = Prob(x > C|H0) (96)

=
∫ ∞

C
fn(x) dx (97)

• β = probability of falsely rejecting H1 = probability of falsely accepting H0:

β = Prob(x ≤ C|H1) (98)

=
∫ C

−∞
fn(x− δ) dx (99)

=
∫ C−δ

−∞
fn(x) dx (100)

• Power = 1− β = probability of correctly rejecting H1.

¶ Example: Normal distribution.
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• Null and alternative hypotheses are as in eqs.(94) and (95), p.27.
• Probability of type I error:

α = Prob(x > C|H0) (101)

= Prob
(
x− µ

σ/
√
n
>

C − µ

σ/
√
n

)
(102)

= 1− Φ

(
C − µ

σ/
√
n

)
(103)

where Φ is the cumulative distribution function of the standard normal distribution.
• Probability of type II error:

β = Prob(x ≤ C|H1) (104)

= Prob
(
x− (µ+ δ)

σ/
√
n

≤ C − (µ+ δ)

σ/
√
n

)
(105)

= Φ

(
C − (µ+ δ)

σ/
√
n

)
(106)

• Note: α and β usually change in opposite directions as n increases.

Review exercise 27, p. 55.

¶ Choose the critical value and sample size, C and n, so that:
• α = specified value, e.g. 0.02.
• β ≤ specified value, e.g. 0.1.

Review exercise 28, p. 55.

¶ Example: normal distribution.
• Given: µ, δ and σ.
• Choose type-I error probability, α, say α = 0.02.
• For any sample size n, the critical value, C, is found from eq.(103), p.28, as:

Φ

(
C − µ

σ/
√
n

)
= 1− α (107)

-
z1−α

α1− α
z

Figure 14: Sketch of probability density illustrating the critical value, eq.(110).

So:
C − µ

σ/
√
n

= z1−α = (1− α)th quantile of Φ (108)
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where the (1− α)th quantile is defined (see fig. 14):

Prob(z ≤ z1−α) = 1− α, z ∼ N (0, 1) (109)

So:
C = µ+

z1−ασ√
n

(110)

• Now the type-II error probability, β, is, from eq.(106), p.28:

β = Φ

(
C − (µ+ δ)

σ/
√
n

)
(111)

= Φ

(
z1−α − δ

σ/
√
n

)
(112)

• Numerical example: µ = 0, δ = 0.01, σ = 0.007.
◦ Require α = 0.02 so z1−α = 2.05.
◦ Table 6 shows n, C and β.

n C, eq.(110) C−(µ+δ)
σ/

√
n

β, eq.(111)

2 0.010147 0.029695 0.512
5 0.0064175 −1.14438 1− 0.8729 = 0.127

10 0.0045379 −2.46754 1− 0.9934 = 0.0066

Table 6: Sample size n, critical value C, and type-II error probability β.

◦ If we require β ≤ 0.1 then:
— n = 5 is too small.
— n = 10 is more than big enough.

• Suppose that δ > 0. Then:

Φ

(
z1−α − δ

σ/
√
n

)
< Φ(z1−α) (113)

Thus, from eqs.(107) and (112):

β = Φ

(
z1−α − δ

σ/
√
n

)
< Φ(z1−α) = 1− α (114)

That is:
β < 1− α (115)

Trade-off: small α means that β may be large.
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8.2 Uncertain Effect Size and Variance

¶ Effect size:
• Effect size: ∆ = µ0 − µ1. Note: ∆ (here) = −δ (section 8.1).
• Consider the upper-tail hypothesis: ∆ < 0.
• A similar derivation can be formulated for other cases.

¶ The problem:
• Assume normal distribution.
• We have an estimate of the effect size, ∆̃, but we are unsure how negative it really

should be.
• We have an estimate σ̃ of the population standard deviation but we are unconfident that

this estimate is correct.

¶ Fractional-error info-gap model:

U(h, ∆̃, σ̃) =
{
(∆, σ) : (1 + h)∆̃ ≤ ∆ ≤ min[0, (1− h)∆̃]

max[0, (1− h)σ̃] ≤ σ ≤ (1 + h)σ̃
}
,

h ≥ 0 (116)

¶ Power = 1− β = 1− probability of type-II error, eq.(112), p.29:

Power(∆, σ, n) = 1− Φ

(
∆
√
n

σ
+ z1−α

)
(117)

where z1−α is the (1− α)th quantile of the standard normal distribution.

¶ Robustness of sample size n, with requirement that the power be no less than 1− βc:

ĥ(n, βc) = max

{
h :

(
min

(∆,σ)∈U(h,∆̃,σ̃)

Power(∆, σ, n)

)
≥ 1− βc

}
(118)

¶ Inner minimum in eq.(118):

µ(h) = min
(∆,σ)∈U(h,∆̃,σ̃)

Power(∆, σ, n) (119)

• µ(h) decreases as h increases: nesting of uncertainty sets.
• Robustness: greatest h such that µ(h) ≥ 1− βc.
• µ(h) is monotonic in h, so robustness is the max h satisfying µ(h) = 1− βc.
• Plot of µ(h) vs.h is plot of 1− βc vs. α̂(n, βc).
• See fig. 15.

¶ Derive the robustness function.
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-
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1− Φ(z1−α)
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Figure 15: Illustration of the calculation of robustness.

• µ(h) occurs for the greatest allowed value of ∆/σ, which is negative and occurs when
∆ = min[0, (1− h)∆̃] and when σ = (1 + h)σ̃.
• If h ≥ 1 then:
◦ Power is minimized when ∆ = 0 so:

Power(∆, σ, n) = 1− Φ(z1−α) = µ(h) (120)

as in horizontal section of the curve in fig. 15.
◦ Robustness is infinite when 1− βc < 1− Φ(z1−α).
◦ Thus very low demanded power (large βc) implies very high robustness:

ĥ(n, βc) = ∞ if βc > Φ(z1−α) (121)

¶ If h < 1: the robustness is the greatest value of h satisfying:

Φ

[
(1− h)∆̃

√
n

(1 + h)σ̃
+ z1−α

]
≤ βc (122)

• Let us denote by q(βc) the βc quantile of the standard normal distribution:

βc =
∫ q(βc)

−∞
ϕ(x) dx (123)

• q(βc) increases from −∞ to +∞ as βc increases from 0 to 1.
• The robustness is the greatest value of h satisfying:

(1− h)∆̃
√
n

(1 + h)σ̃
+ z1−α ≤ q(βc) (124)

• If:
∆̃
√
n

σ̃
+ z1−α > q(βc) (125)

then the robustness is zero for this value of βc, and positive robustness is obtained only for
greater values of βc (lower power).
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• Define:
ν =

q(βc)− z1−α

∆̃
√
n/σ̃

(126)

The robustness is positive only if ν < 1 (recalling that ∆̃ < 0).
• Now, solving eq.(124) (as an equality) for h, in the case that eq.(125) does not hold

(that is, ν < 1), we obtain the robustness:

ĥ(n, βc) =


1− ν

1 + ν
if ν < 1

0 else
, if βc ≤ Φ(z1−α) (127)

The complete robustness function is eqs.(121) and (127).

¶ Trade-off: Robustness vs. power.
Applying the chain rule for differentiation to eq.(127), one finds:

∂ĥ(n, βc)

∂(1− βc)
< 0 (128)

The robustness ĥ(n, βc) decreases as the demanded power, 1− βc, increases: high aspira-
tions are vulnerable to uncertainty.

¶ Trade-off: Robustness vs. sample size.
One finds:

∂ĥ(n, βc)

∂n
> 0 (129)

Thus the robustness increases as the sample size increases.
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8.3 Uncertain Sample PDF

8.3.1 Background

¶ Binary statistic test.
• x = decision statistic.
• Distribution of x under H1 equals distribution under H0 shifted up by δ:

H0 : x ∼ f(x) (130)

H1 : x ∼ f(x− δ) (131)

• We accept the null hypothesis iff x ≤ C.
• Determine:
◦ Sample size, n.
◦ Critical value, C.

¶ Definitions.
• α = level of significance = probability of type-I error (falsely reject H0).
• β(f) = probability of type-II error (falsely reject H1) = 1− power.
• δ = non-negative effect size.
• f(x) = pdf of decision statistic.
• C = critical value.

1− α =
∫ C

−∞
f(x) dx (132)

β(f) =
∫ C

−∞
f(x− δ) dx =

∫ C−δ

−∞
f(x) dx = 1− α−

∫ C

C−δ
f(x) dx (133)

¶ Standard statistical approach.
• Known sampling distribution: f̃(x).
• f̃(x) depends on sample size (number of measurements.)
• Specify α and δ.
• Determine C and β from eqs.(132) and (133).
• Increase sample size until the power is adequate.
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8.3.2 Info-gap Approach to Determining the Sample Size

¶ Approach.
• Sampling distribution is uncertain.
• Evaluate info-gap robustness of the estimated power.
• Determine sample size, n, so that adequate power is adequately robust.

¶ Info-gap model for pdf uncertainty: fractional-error.

U(h, f̃) =
{
f(x) : f ∈ P , |f(x)− f̃(x)| ≤ hf̃(x)

}
, h ≥ 0 (134)

P is the set of all non-negative and normalized pdfs on the domain of x.

¶ Performance requirement.
• Power = 1− β. Require large power; small β.
• 1− βd = demanded power.
• Analyst requires β ≤ βd.

¶ Robustness:

ĥ(N, βd) = max

{
h :

(
max

f∈U(h,f̃)

β(f)

)
≤ βd

}
(135)

-

6

βd

ĥ
h

γ(h)

0
0

Figure 16: Illustration of the calculation of robustness.

¶ Evaluating robustness.
• Denote inner maximum in eq.(135) by γ(h).
• Robustness is max h such that γ(h) ≤ βd.
• Uncertainty sets U(h, f̃) are nested with respect to h.
• Thus γ(h) increases as h increases.
• Thus robustness is max h at which γ(h) = βd.
• γ(h) is inverse of ĥ(N, βd):

γ(h) = βd if and only if ĥ(N, βd) = h (136)
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8.3.3 An Approximate Robustness for Small Effect Size

¶ Special case, very small effect size:

δ ≪ 1 (137)

Derive approximate expression for robustness.

¶ Now eq.(133), p.33, can be approximated as:

β(f) = 1− α− f(C)δ (138)

¶ Nominal critical value, C̃:
• C̃ = (1− α)th quantile of the best-estimated pdf f̃(x).
• C̃ depends on sample size n.

¶ Maximizing pdf. The pdf in U(h, f̃) which maximizes β is very nearly:

f̂(x) =


f̃(x) if x < C̃ − δ

(1− h)f̃(x) if x ∈ [C̃ − δ, C̃]

(1 + wh)f̃(x) if x > C̃

(139)

where w is a very small positive number which normalizes f̂(x). That is, w is determined
so that the decrement in f̂ in [C̃ − δ, C̃] is compensated by the increment in (C̃,∞):

wh[1− F̃ (C̃)] = hf̃(C̃)δ (140)

where F̃ is the cumulative distribution function of f̃ .

¶ Evaluating γ(h). β(f̂) in eq.(138) becomes:

γ(h) = β(f̂) = 1− α− (1− h)f̃(C̃)δ (141)

Note: γ(h) increases as h increases.
¶ Evaluating robustness.

Equate γ(h) in eq.(141) to βd and solve for h:

ĥ(n, βd) =


0 if βd < 1− α− f̃(C̃)δ

βd − 1 + α + f̃(C̃)δ

f̃(C̃)δ
else

(142)

• Robustness increases as βd increases. Trade-off:
high power ⇐⇒ low robustness.

• Robustness is zero when βd equals the nominal value, β(f̃).
• Robustness depends on sample size through nominal critical value C̃.
• This derivation is contingent on the assumption in eq.(137), p.35.
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9 Tests of the Mean with Distributional Uncertainty

§ Source: Yakov Ben-Haim, 2008, Tests of the Mean with Distributional Uncertainty: An
Info-Gap Approach, working paper.2

9.1 Distributional Uncertainty

§ Statistical tests of the mean depend on various assumptions about the data and popu-
lation, such as:
• Normality.
• Random sampling: independent measurements with same instrument from same pop-

ulation which is uneffected by the measurement process.
• Stationarity of the sampled population.

§ Distributional uncertainty:
• Violations of assumptions about data and population, unknown to the analyst.
• E.g.:
◦ Non-normality.
◦ Sampling protocol varies. E.g., some observers are experts, some are not.
◦ Population evolves during the sample.
◦ Population is influenced by the sample.

• Examples:
◦ Franklin3 uses a range of observational data from many different sources over the

past 150 years—of varying and uncertain accuracy and reliability—to evaluate change in
bird assemblages in northern Australia.

◦ McCarthy4 uses museum collections to evaluate trends in marsupials and monotremes,
recognizing that variable and uncertain collection efforts introduce uncertainties.

◦ Burgman et al 5 recognize that “collection frequencies will reflect changing trends in
museum and herbarium collections”, which introduces uncertainties in evaluating extinction
threats based on historical development of collections.

◦ Stewart-Oaten et al 6 study tests of changes of a mean population property, before
and after an impact, where the impact cannot be replicated (e.g., construction of a power
plant). They note that data from such measurements “do not necessarily satisfy” the as-
sumptions of standard tests. They state that “there is no panacea” for violation of test as-
sumptions, and if the assumptions “are seriously wrong, alternative analyses are needed.
This will often require a long time series of data.” These authors discuss many sources of
violation of test assumptions, stressing the importance of unknown skewness of distribu-
tions or correlations among measurements.

2Files: \papers\T-Test\ct03.tex and ttest07.tex.
3Franklin, Donald C., 1999, Evidence of disarray amongst granivorous bird assemblages in the savannas

of northern Australia, a region of sparse human settlement, Biological Conservation, 90: 53–68.
4McCarthy, Michael A., 1998, Identifying declining and threatened species with museum data, Biological

Conservation, 83: 9–17.
5Burgman, Mark A., Roger C. Grimson and Scott Ferson, 1995, Inferring threat from scientific collections,

Conservation Biology, 9: 923–928.
6Stewart-Oaten, Allan, James R. Bence, and Craig W. Osenberg, 1992, Assessing effects of unreplicated

perturbations: No simple solutions, Ecology, vol. 73, #4, pp.1396–1404.
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§ The problem:
When violations are unknown and uncharacterized, the analyst cannot correct for them.

§ Statistical tools exist for managing distributional uncertainty.
• Careful test design.
• Non-parametric methods weaken some assumptions, e.g. normality.
◦ These tests do assume random sampling, and usually are asymptotic.
◦ They can be very sensitive to outliers.

• Given adequate data, one can model the data as a mixture of populations.
• Outliers can be managed using Jacknife or trimmed-means techniques.
• Method of M -estimates.
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9.2 Info-Gap Representations of Distributional Uncertainty

§ θ is the test statistic. It may be a t statistic, but not necessarily.

§ Tests of the mean:

H0 : x ∼ g(x) (143)

H1 : x ∼ g(x− δ) (144)

§ Estimated pdfs.
• Let f̃ i(θ) denote the best guess of the pdf of the test statistic t, under hypothesis Hi.
• For instance:
◦ If θ is the t statistic then f̃ 0(θ) is the t distribution with n− 1 degrees of freedom.
◦ f̃ 1(θ) = f̃ 0(θ−δ) where δ = (T1−T0)/(s/

√
n) is the shift between the two hypotheses.

◦ Thus f̃ 1(θ) is formed by shifting f̃ 0(θ) to the right by δ.

§ A fractional-error info-gap model:

U i(h, f̃ i) =
{
f(θ) : f(θ) ∈ P , |f(θ)− f̃ i(θ)| ≤ hf ⋆

t , ∀ θ
}
, h ≥ 0 (145)

• P is the set of all normalized non-negative pdf’s.
• f ⋆

t is a normalization constant with units of probability density. For instance the mode:

f ⋆
t = max

θ
f̃(θ) (146)

If f̃(θ) is a t distribution then f ⋆
t = f̃(0).

§ A more restrictive fractional-error info-gap model:

U i(h, f̃ i) =
{
f(θ) : f(θ) ∈ P , |f(θ)− f̃ i(θ)| ≤ hf̃ i(θ), ∀ θ

}
, h ≥ 0 (147)

• The variation on the tails dies out if f̃ i(θ) becomes small on the tails, unlike eq.(145).

§ Estimated cdfs.
• Let F̃ i(θ) denote the best guess of the cdf of the test statistic t, under hypothesis Hi.
• For instance:
◦ If θ is the t statistic then F̃ 0(θ) is the t distribution with n − 1 degrees of freedom for

the statistic in eq.(168).
◦ F̃ 1(θ) = F̃ 0(θ − δ) where δ = (T1 − T0)/(s/

√
n).

◦ Thus F̃ 1(θ) is formed by shifting F̃ 0(θ) to the right by δ.

§ Uniform-bound info-gap model:

U i(h) =
{
F (θ) : F (θ) ∈ P , |F (θ)− F̃ i(θ)| ≤ h, ∀ θ

}
, h ≥ 0 (148)

where P is the set of all normalized non-negative cdf’s.
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9.3 Robustness Functions with CDF Uncertainty

§ This section is based on file \papers\T-Test\ct03.tex.

9.3.1 Binary Test: Formulation

§ Data.
• X = {x1, . . . , xn}
• Not necessarily a random sample of any known distribution.

§ Decision. Two simple hypotheses about the population mean:

H0 : µ = T0 (149)

H1 : µ = T1 (150)

where each Ti is a specified number, and T1 > T0.

§ Size and power.
• θ is a statistic, for instance the t statistic.
• Fi(θ) is the cdf of θ under Hi.
• For any distribution F (θ), qα(F ) is the (1− α)th quantile of F (θ):

1− α = F [qα(F )] (151)

• We reject H0 with significance α if:

θ ≥ qα(F0) (152)

• The size α, and power, 1− β, are defined in:

1− α = F0[qα(F0)] (153)

β = F1[qα(F0)] (154)

• The size, α, is the probability of falsely rejecting the null hypothesis, H0.
• 1− α is the probability of correctly accepting H0.
• The power, 1− β, is the probability of correctly rejecting H0.
• β is the probability of falsely rejecting H1.
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9.3.2 Robustnesses for Type I Errors

§ Decision threshold. Test of size α⋆ which rejects H0 when:

θ ≥ qα⋆(F̃ 0) (155)

α⋆: “nominal” size of the test, based on best-estimate of cdf under H0, F̃ 0.

§ Note that:
F̃ 0[qα⋆(F̃ 0)] = 1− α⋆ (156)

§ Robustness for falsely rejecting H0:
• Maximum horizon of uncertainty, h, at which the test at nominal size α⋆ falsely rejects

H0 with probability no greater than α:

ĥ0(α
⋆, α) = max

{
h :

(
min

F∈U0(h)
F [qα⋆(F̃0)]

)
≥ 1− α

}
(157)

• We use the quantile qα⋆(F̃ 0) because the test is implemented with the quantile of the
best-guess distribution under H0, F̃ 0(θ), and is of nominal size α⋆.
• The actual size (probability of falsely rejecting H0) is determined by the unknown true

distribution under H0, F (θ), which is info-gap-uncertain.

§ Relation to type I error (falsely rejecting H0):
• ĥ0(α

⋆, α) is the greatest horizon of uncertainty up to which the probability of type I error
is no greater than α.

§ The Robustness, ĥ0(α
⋆, α), for the info-gap model in eq.(148), is:

ĥ0(α
⋆, α) = α− α⋆ (158)

or zero if this is negative.
• α is the effective size, while α⋆ is the nominal size.
• For any choice of α⋆, the robustness curve for type-I error, ĥ0(α

⋆, α) vs. α, is indepen-
dent of the form of the test: t test, Wilcoxon signed-ranks test, etc.
• The implementation of the test, eq.(155), does depend on the type of test, through the

value of the quantile qα⋆(F̃ 0).

§ Derivation of eq.(158).
• Define the following step function:

V (x) =


0, if x < 0
x, if 0 ≤ x ≤ 1
1, else

(159)

• Let m0(h) denote the inner minimum in eq.(157).
• The robustness, ĥ0(α

⋆, α), is the greatest non-negative h for which m0(h) = 1− α.
• If there is no such h, then the robustness is zero.
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• The inner min results when F (θ) is minimal at qα⋆(F̃ 0), subject to membership in U0(h).
• From the info-gap model in eq.(148) we find:

m0(h) = V
(
F̃ 0[qα⋆(F̃ 0)]− h

)
= V (1− α⋆ − h) (160)

• Recall that F̃ 0[qα⋆(F̃ 0)] = 1− α⋆.
• The greatest value of h at which m0(h) = 1− α is the robustness, eq.(158).
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9.3.3 Robustnesses for Type II Errors

§ Robustness for falsely accepting H0.
• ĥ1(α

⋆, β) is the greatest horizon of uncertainty up to which the probability of falsely
accepting H0, with a test of nominal size α⋆, is no greater than β:

ĥ1(α
⋆, β) = max

{
h :

(
max

F∈U1(h)
F [qα⋆(F̃0)]

)
≤ β

}
(161)

§ 1− β⋆ is the nominal power:

1− β⋆ = 1− F̃ 1[qα⋆(F̃0)] (162)

• ĥ1(α
⋆, β), for the info-gap model in eq.(148), is:

ĥ1(α
⋆, β) = 1− β⋆ − (1− β) (163)

or zero if this is negative.
• 1− β as the effective power. 1− β⋆ is the nominal power.
• For any choice of α⋆, ĥ1(α

⋆, β) vs. β, depends on the form of the test, unlike for the
type-I robustness. This is because the value of β⋆ depends on α⋆ through the cdf’s of the
test statistic, F̃ 0 and F̃ 1.

§ Derivation of eq.(163).
• m1(h) denotes the inner maximum in eq.(161).
• The robustness, ĥ1(α

⋆, β), is the greatest h at which m1(h) = β.
• From the info-gap model in eq.(148), and using V (x) in eq.(159):

m1(h) = V
(
F̃ 1[qα⋆(F̃ 0)] + h

)
(164)

Equating this to β and solving for h we find the robustness in eq.(163) with the aid of the
expression for the nominal power in eq.(162).
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9.3.4 Decisions and Judgments

§ Two decisions, two judgments:
• Decide on the nominal test size α⋆ and the sample size n.
◦ Together these decisions determine the decision threshold qα⋆(F̃ 0) in eq.(155), p.40.

• Judge what are reliable and acceptable values of effective size α and effective power
1− β.

◦ Do this by considering ĥ0(α
⋆, α) and ĥ1(α

⋆, β).
◦ α (size or level of significance) is the probability of falsely rejecting H0.
◦ 1− β (power) is the probability of correctly rejecting H0.

§ Example: t test.
• Test statistic, θ = (x − T0)(s/

√
n). x is sample mean, s2 is sample variance, and n is

sample size.
• Estimated distribution under H0, F̃ 0(θ), is the cdf of the t statistic with n− 1 degrees of

freedom.
• Estimated distribution under H1 is F̃ 1(θ) = F̃ 0(θ − δ) where δ = (T1 − T0)/(s/

√
n).

• True distributions under H0 and H1 are unknown; uncertainty is represented by info-gap
model in eq.(148), p.38.

§ No distributional uncertainty: no need for judgments:
• α⋆ is the actual size.
• Actual power, 1− β⋆, is entirely determined by α⋆ and n.
• Values of α⋆ and 1− β⋆ are shown in table 7.
• Power increases with increasing n at fixed α⋆.
• Power increases with increasing α⋆ at fixed n.

α⋆ = 0.01 α⋆ = 0.05
n 1− β⋆ n 1− β⋆

5 0.1027 3 0.1784
7 0.3185 4 0.3736
9 0.5400 5 0.5390

12 0.7644 7 0.7457
31 0.9980 31 0.9997

Table 7: Size and power in the absence of distributional uncertainty.
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Figure 17: Robustness curves for the
t test, ĥ0(α

⋆, α) for falsely rejecting H0,
and ĥ1(α

⋆, α) for falsely rejecting H1.
Nominal size is α⋆ = 0.01. ĥ1(α

⋆, α)
calculated at 5 different sample sizes:
n = 5, 7, 9, 12 and 31. δ = 1.

Figure 18: Robustness curves for the
t test, ĥ0(α

⋆, α) for falsely rejecting H0,
and ĥ1(α

⋆, α) for falsely rejecting H1.
Nominal size is α⋆ = 0.05. ĥ1(α

⋆, α)
calculated at 5 different sample sizes:
n = 3, 4, 5, 7 and 31. δ = 1.

§ Robustness curves. Figs. 17 and 18:
• ĥ0(α

⋆, α) vs. α (positive slope).
◦ No robustness for nominal size: ĥ0(α

⋆, α⋆) = 0.
◦ Positive slope: Trade-off: robustness is exchanged for significance.

• ĥ1(α
⋆, β) vs. 1− β (negative slope).

◦ No robustness for nominal power: ĥ1(α
⋆, β⋆) = 0.

◦ Negative slope: Trade-off: robustness is exchanged for power.

§ Judging reliable effective size, α:
• The test designed for α⋆ = 0.01 will falsely reject H0 with probability ≤ 0.05 if F (θ)

differs from F̃ 0(θ) by no more than 0.04 in cumulative probability.
◦ E.g., tails no heavier than 0.04 of total distribution.
◦ E.g., outlying sub-population no larger than 0.04 of total distribution.

§ Judging effective power, 1− β:
• A test designed for size α⋆ = 0.01 with sample size n = 9 (dot-dash in fig. 17), has no

robustness for power 0.54 (the horizontal intercept and nominal power).
• This test will falsely accept H0 with probability of 0.44 if the actual cdf differs from the

estimated cdf by no more than 0.1.
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Figure 19: Same as fig. 17.

§ Choosing the sample size, n.
• Only type-II robustness is influenced by the sample size.
• The nominal and effective power:
◦ increase with increasing sample size,
◦ are influenced by the nominal size α⋆.

• Choose n in light of the effective power and robustness which are needed.
• See fig. 19, which is expanded from fig. 17.

§ Choosing the sample size, n, continued.
• In fig. 19 consider nominal size α⋆ = 0.01.
• Judgment: effective size α = 0.05 is adequate and reliable because ĥ0(0.01, 0.05) =

0.04.
• Apply this robustness to type II: Require ĥ1(α

⋆, β) = 0.04.
• From fig. 19: effective powers of 0.50, 0.72 and 0.96 for sample sizes 9, 12 and 31.
• Judgment: power of 0.50 is too small, so we require a sample larger than n = 9.
• Judgment: if power of 0.72 is adequate then we adopt a sample of size 12.
• Choosing a sample of size 31 would result in power of 0.96.

§ Judgments of robustness: how much robustness is needed?
• Robustness has units of probability (in this example).
• Thus judge adequate robustness probabilistically.
• This not necessary: analogical inference.

§ Choosing the sample size, n, continued.
• Previously we required ĥ0(α

⋆, α) = ĥ1(α
⋆, β).

• This is not necessary. We can make separate judgments for type I and type II robust-
nesses.
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9.4 Robustness Functions with PDF Uncertainty: Definitions

§ This section and the next are based on file \papers\T-Test\ttest07.tex.

9.4.1 Binary Test: Formulation

§ Data.
• X = {x1, . . . , xn}
• Not necessarily a random sample of any known distribution.

§ Decision. Two simple hypotheses about the population mean:

H0 : µ = T0 (165)

H1 : µ = T1 (166)

where each Ti is a specified number, and T1 > T0.

§ Sample mean and variance:

x =
1

n

n∑
i=1

xi, s2 =
1

n− 1

n∑
i=1

(xi − x)2 (167)

§ The t statistic for testing H0 is:

t =
x− T0

s/
√
n

(168)

which has a t distribution with n − 1 degrees of freedom under H0 (in the absence of
distributional uncertainty).

§ Size and power of the test.
• Let fi(t) denote the probability density of t under Hi.
• For any density f(t), let qα(f) denote the (1− α)th quantile of f(t):

∫ qα(f)

−∞
f(t) dt = 1− α (169)

• We reject H0 with significance α if:

t ≥ qα(f0) (170)

• The size α, and power, 1− β, are defined in:

1− α =
∫ qα(f0)

−∞
f0(t) dt (171)

β =
∫ qα(f0)

−∞
f1(t) dt (172)

◦ α is the probability of falsely rejecting the null hypothesis, H0.
◦ 1− β is the probability of correctly rejecting H0.
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9.4.2 Robustness for Falsely Rejecting H0. (Type I Error.)

• Consider a t test of size α⋆, which rejects H0 when:

t > qα⋆(f̃ 0) (173)

• The robustness is the maximum horizon of uncertainty, h, up to which the t test at size
α⋆ falsely rejects H0 with probability no greater than α:

ĥ0(t, α
⋆, α) = max

{
h :

(
min

f∈U0(h,f̃0)

∫ qα⋆ (f̃0)

−∞
f(t) dt

)
≥ 1− α

}
(174)

• qα⋆(f̃ 0): the test is implemented with the quantile of the best-guess distribution under
H0, f̃ 0, and is of nominal size α⋆.
• Actual size (probability of falsely rejecting H0) is determined by the unknown true distri-

bution under H0, f .
• The inverse of ĥ0(t, α

⋆, α) is defined as:

mt
0(h, α

⋆) = 1− α if and only if ĥ0(t, α
⋆, α) = h (175)

• An explicit expression for the inverse of ĥ0(t, α
⋆, α) is:7

mt
0(h, α) = [c1(h)− c2(h)]hf

⋆
t + F̃ 0[c2(h)]− F̃ 0[c1(h)] (176)

where:

c1(h) = −f̃
−1

0 (hf ⋆
t ) (177)

c2(h) = min[f̃
−1

0 (hf ⋆
t ), qα⋆(f̃ 0)] (178)

◦ f̃ 0(t) is the pdf of the t variate with n− 1 dofs.
◦ F̃ 0(t) is the cumulative distribution function of the t variate with n− 1 dofs.
◦ f̃

−1

0 (h) is the inverse of f̃ 0(t) for t ≥ 0.
Thus −f̃

−1

0 (h) is the smallest value of t at which f̃ 0(t) = h.
So −f̃

−1

0 (0) = −∞ and f̃
−1

0 [f̃ 0(0)] = 0.

§ Type I error (falsely rejecting H0).
◦ ĥ0(t, α

⋆, α) is the greatest horizon of uncertainty at which:
the probability of type I error is no greater than α.

◦ The test is implemented so that the probability of type I error is no greater than α⋆ as-
suming no distributional uncertainty.

7Yakov Ben-Haim, 2008, Tests of the Mean with Distributional Uncertainty: An Info-Gap Approach, working
paper. Appendix A.
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9.4.3 Robustness for Falsely Accepting H0. (Type II Error.)

• Consider, as before, a t test of size α⋆, which rejects H0 when:

t > qα⋆(f̃ 0) (179)

• The robustness is the greatest horizon of uncertainty up to which the probability of
falsely accepting H0, with a t test of size α⋆, is no greater than β:

ĥ1(t, α
⋆, β) = max

{
h :

(
max

f∈U1(h,f̃1)

∫ qα⋆ (f̃0)

−∞
f(t) dt

)
≤ β

}
(180)

• An explicit expression for the inverse of ĥ1(t, α
⋆, β) is:8

M t
1(h, α

⋆) = 1 + (c4 − c3)hf
⋆
t − F̃ 1(c4) + F̃ 1(c3) (181)

where:

c3(h) = qα⋆(f̃0) (182)

c4(h) = max[f̃−1
1 (hf ⋆

t ), qα⋆(f̃0)] (183)

◦ We have assumed that qα⋆(f̃ 0) ≥ δ, which in practice will always hold.
◦ f̃ 1(t) = f̃ 0(t− δ).
◦ F̃ 1(t) is the cumulative distribution function of the f̃ 1(t).
◦ f̃

−1

1 (h) is the inverse of f̃ 1(t) for t ≥ δ.
• A plot of h vs. M t

1(h, α
⋆) is identical to a plot of ĥ1(t, α

⋆, β) vs. β.

§ Nominal power.
• Let 1− β⋆ be the nominal power:

β⋆ =
∫ qα⋆ (f̃0)

−∞
f̃ 1(t) dt (184)

From the contraction and nesting axioms we recognize that ĥ1(t, α
⋆, β⋆) = 0 and ĥ1(t, α

⋆, β) >

0 only for β > β⋆.

8Yakov Ben-Haim, 2008, Tests of the Mean with Distributional Uncertainty: An Info-Gap Approach, working
paper. Appendix B.
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9.5 Robustness with PDF Uncertainty: Numerical Examples

9.5.1 Robustness for Type-I Error
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Figure 20: Robustness curves for the t test, ĥ0(t, α
⋆, α), for falsely rejecting H0, at three

design sizes, α⋆ = 0.01, 0.03 and 0.05. Sample size n = 17. f ⋆
t = maxt f̃ 0(t).

§ Trade-off:
• Robustness vs. level of significance.
• Zero robustness at nominal level of significance.

§ What does ĥ0(t, α
⋆, α) = 0.02 mean?

• The true pdf, f(t), can deviate from f̃ 0(t) by a ‘bump’ (or dimple) no larger than 0.02f ⋆
t

if size α is not to be exceeded.
• This is a small bump: the tail of f̃ 0(t) becomes as thin as 0.02f ⋆

t at about 3 σ’s from the
mean.
• So, ĥ(t, α⋆, α) = 0.02 might be sufficient robustness only if immunity to small deviations

on the far tails is sufficient.

9.5.2 Robustness for Type-II Error
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Figure 21: Robustness curves for the t test, ĥ1(t, α
⋆, β), for correctly rejecting H0, at three

design sizes, α⋆ = 0.01, 0.03 and 0.05. Sample size n = 17. f ⋆
t = maxt f̃ 0(t).

§ Trade-off:
• Robustness vs. power of the test.
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• Zero robustness at nominal power.
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10 Accelerated Lifetime Testing: Simple Case

10.1 Formulation

§ Lifetime testing: Measure MTTF or other statistical characterization of a system under
operating conditions.9

§ Accelerated lifetime testing: Measure MTTF or other statistical characterization of a
system under conditions which are more stressful than ordinary operating conditions. Then
deduce lifetime under ordinary conditions.

§ Lifetime of a device is denoted ℓ, which depends on the “stress” which the system is
subject to: ℓ(s).

§ Linear lifetime-stress model:
• We adopt a piece-wise linear model:

ℓm(s, c) =

 (s− s0)c if s ≤ s0

0 if s ≥ s0
(185)

• c < 0.
• s0 is known.
• That is, ℓ = 0 for stress greater than s0.
• Lifetime increases as stress decreases below s0.

§ Data: we have measured (estimated) ℓ at stress s1 < s0: ℓ(s1) is known.

§ Best-estimated model: Given the data, we estimate c:

ĉ =
ℓ(s1)

s1 − s0
(186)

§ Requirement: Estimate ℓ(s) for s2 < s1.

10.2 Uncertainty and Robustness

§ Uncertain information: We expect that:

ℓ(s2) > ℓm(s2, ĉ) (187)

• Lifetime at low stress, s2, should be greater than linear prediction.
• We don’t know how much greater.

§ Info-gap model of uncertainty:

U(h) = {ℓ(s2) : 0 ≤ ℓ(s2)− ℓm(s2, ĉ) ≤ h} , h ≥ 0 (188)
9This example is programmed in GapZapper: Domain: Statistics, Application: Accel-Lifetime-Test-Simple.
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§ Performance function:
• Consider linear model with coefficient c. Squared error is:

E2(c) = [ℓ(s1)− ℓm(s1, c)]
2 + [ℓ(s2)− ℓm(s2, c)]

2 (189)

§ Performance requirement:

E2(c) ≤ E2
c (190)

§ Robustness of linear model ℓm(s, c):

ĥ(c, Ec) = max

{
h :

(
max

ℓ(s2)∈U(h)
E2(c)

)
≤ E2

c

}
(191)

10.3 Evaluating the Robustness

§ We begin by evaluating the inverse of the robustness. We then invert this.

§ Let µ(h) denote the inner maximum in the robustness, eq.(191). This is the inverse of
the robustness:

µ(h) = E2
c implies ĥ(c, Ec) = h (192)

Equivalently: √
µ(h) = Ec implies ĥ(c, Ec) = h (193)

• Plot of h vs
√
µ(h) is the same as ĥ(c, Ec) vs Ec.

§ Extreme values of ℓ(s2) at horizon of uncertainty h. From info-gap model of eq.(188):

ℓm(s2, ĉ) ≤ ℓ(s2) ≤ ℓm(s2, ĉ) + h (194)

§ Evaluating µ(h):
• µ(h) occurs at one of the extreme values of ℓ(s2).
• That is, µ(h) is the greater of the following two values:

µ1 = [ℓ(s1)− ℓm(s1, c)]
2 + [ℓm(s2, ĉ)− ℓm(s2, c)]

2 (195)

µ2(h) = [ℓ(s1)− ℓm(s1, c)]
2 + [ℓm(s2, ĉ) + h− ℓm(s2, c)]

2 (196)

• Assumption: Given our uncertain information, eq.(187), we will only consider slopes c

which are steeper than ĉ:
c ≤ ĉ < 0 (197)

Recall that s0 is known with certainty.
• Thus:

ℓm(s2, c) ≥ ℓm(s2, ĉ) (198)

• Hence the inverse robustness is:

µ(h) =

 µ1 if h < 2[ℓm(s2, c)− ℓm(s2, ĉ)]

µ2(h) else
(199)
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• When c = ĉ then µ(h) = µ2(h). Also note that from the definition of ĉ one finds that
ℓ(s1) = ℓm(s1, ĉ). Hence:

µ2(h) = h2 (200)

So:
ĥ(ĉ, Ec) = Ec (201)

Generally, we see that eq.(199) can be inverted and, together with eq.(195) and (196), we
obtain an explicit expression for the robustness. Set µ2(h) = E2

c in eq.(199) and solve for h
to obtain:

ĥ(c, Ec) =

 0 if Ec ≤
√
µ1√

E2
c − [ℓ(s1)− ℓm(s1, c)]2 − ℓm(s2, ĉ) + ℓm(s2, c) else

(202)

-

6

√
µ(h) or Ec

h or ĥ(c, E2
c )

0
0

-

6 c

ĉ

√
µ(h) or Ec

h or ĥ(c, E2
c )

0
0

Figure 22: Illustration of the robust-
ness based on eq.(199).

Figure 23: Illustration of the robust-
ness based on eq.(199).
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11 Review Exercises

§ The exercises in this section are not homework problems, and they do not entitle the
student to credit. They will assist the student to master the material in the lecture and are
highly recommended for review and self-study.

1. Explain that the variance, eq.(7), p.4, can we written as:

var(x) = E(x2)− E(x)2 (203)

2. What is it significant and important that theorem 1, p.3, does not depend on the prob-
ability distribution of the observations?

3. Does eq.(10), p.4, depend on the probability distribution of the observations?
4. The central limit theorem, p.4, explains the widespread (but not universal) occurrence

of normal distributions. (Is this why the normal distribution is called “normal”?) Think
up some examples of natural, social, or other phenomena that are described by nor-
mal distributions.

5. Why is the hypothesis test in eqs.(12) and (13), p.5, called a “two-tailed” test? Why is
the hypothesis test in eqs.(14) and (15), p.5, called a “one-tailed” test?

6. Why is the level of confidence, eq.(16), p.5, defined as “the probability of obtaining a
result at least as extreme as the observed result”, rather than as “the probability of
obtaining a result equal to the observed result”?

7. Explain eq.(18), p.6: where does the “standard normal” distribution, N (0, 1), come
from?

8. Why is N ≥ 25 a “rough number” on p.7? Why can’t we state a precise value for
N above which the normal distribution applies exactly? For what type of distribution
would you need N ≫ 25 or N ≪ 25?

9. The probability of 0.14, in eq.(30), p.8, may not sound small to everybody. How do
you decide what is small, medium, huge, big enough, etc?

10. Do you agree with the assertion, on p.9, that α = 0.14 is “not very convincing”? Why?
11. Will the sequential procedure in table 1, p.9, always result in α decreasing and thus

leading to rejection of H0? What would the table look like if really H0 should be
rejected?

12. When would you choose the alternative hypothesis in eq.(33) or (34) rather than (32),
p.10?

13. Why can’t we answer the question following eq.(36), p.10, under hypothesis H1?
14. Explain eqs.(43) and (44), p.11.
15. Why is eq.(46), p.11, true?
16. 0.21 > 0.15, so why isn’t the answer to the question following eq.(51), p.13, obvious?
17. Regarding the conclusion that the engine is running hot, following eq.(55), p.15: Didn’t

we already know this from the fact that 0.21 > 0.15? What additional insight does the
χ2 test provide (if any)?

18. The χ2 test is used to test “categorical” data: events that occur in different types,
classes, or categories, as distinct from events that result in a real number. The tests
in sections 4, p.13, 5, p.16, and 6, p.18, are very different, though they are all χ2 tests.
What are the categories in these tests?
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19. What is the difference between pu and pa in eq.(80), p.22? Why isn’t “unacceptable”
anything greater than “acceptable”? What deeper problem of meaning and judgment
is this distinction trying to grapple with?

20. Are the two types of errors on p.22 the only errors that one can make? Are they
equally severe?

21. What assumptions underlie the binomial distribution in eq.(82), p.22?
22. Why is PI in eq.(86), p.23, call the consumer’s risk? Why is PII in eq.(87), p.23, call

the producer’s risk?
23. In the example on p.24, is a sample size N = 200 better or worse than a sample size

of N = 100? Why?
24. An infinite sample size is ideal, as shown in fig. 11, p.25, but this is usually not feasible.

What sample size is big enough? Why does it matter who decides?
25. In fig. 12, p.26, explain why δ > 0 implies (1) pdf shifts to the right and (2) is repre-

sented by g(t− δ) rather than g(t+ δ).
26. Explain eq.(93), p.27. (Recall theorems in section 1).
27. Why do α and β in eqs.(101)–(106), p.28, change in opposite directions as n in-

creases? What is the significance of this?
28. Why the different treatment of α and β on p.28: α = 0.02 and β ≤ 0.1?


