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1 Info-Gap Robustness of a Beam With an Uncertain Load

(Source: Yakov Ben-Haim, 1996, Robust Reliability in the Mechanical Sciences, Springer, sec-
tions 3.1, 3.2.)

¶ 3 components of reliability analysis:
1. A system model.
2. A failure criterion.
3. An uncertainty model.

¶ We will consider info-gap models of uncertainty and develop, in a preliminary example, the idea
of info-gap robustness.

¶ Consider a:
• Uniform simply-supported beam.
• Uncertain distributed load density function, ϕ(x) [N/m].

¶ We wish to
• Analyze the reliability of the beam given very fragmentary information.
• Optimize the design of the beam by enhancing the reliability.
• Evaluate the impact of different levels and types of information.

¶ What we do know about the load:
• ϕ̃(x) = nominal load density function, [N/m].
• Substantial deviation from the nominal load is bounded along the beam.

¶ What we do not know about the load:
• The precise realization of the load density, ϕ(x).
• The bound on the deviation of the true from the nominal load.

¶ The disparity between what we
do know and what we need to know
for a fully competent design or analysis
is an information gap.

¶ We represent the load uncertainty with an info-gap model:

U(h, ϕ̃) =
{
ϕ(x) :

∣∣∣ϕ(x)− ϕ̃(x)
∣∣∣ ≤ h

}
, h ≥ 0 (1)

This is an info-gap uncertainty model.
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¶ Note the two levels of uncertainty in an info-gap model:
• At fixed h: true load profile ϕ(x) is unknown.
• Horizon of uncertainty — h — is unknown.

¶ 2 properties of all info-gap models:
• Contraction:

U(0) =
{
ϕ̃(x)

}
(2)

• Nesting:
h < h′ =⇒ U(h) ⊆ U(h′) (3)

¶ System model:
• Static bending moment as a function of load profile: M(x).
• For simple-simple beam one finds:

M(x) = −L− x

L

∫ x

0
ϕ(u)udu− x

L

∫ L

x
ϕ(u)(L− u)du (4)

where L is the length of the beam.

¶ The failure criterion:
The beam fails if the bending moment M(x) exceeds the critical value Mc:

max
0≤x≤L

|M(x)| > Mc (5)

¶ We evaluate the robustness, ĥ, by combining
System model, uncertainty model, and failure criterion:
The robustness is:

The greatest info-gap, h,
such that the system model
does not violate the failure criterion
for any load profile up to uncertainty h.

We can express ĥ as:

ĥ = maximum tolerable uncertainty (6)

= max {h : failure cannot occur} (7)

= max

{
h :

(
max
0≤x≤L

|M(x)|
)
≤Mc for all ϕ(x) in U(h, ϕ̃)

}
(8)

= max

{
h :

(
max

ϕ∈U(h,ϕ̃)

max
0≤x≤L

|M(x)|
)

≤Mc

}
(9)

We can invert the order of the maxima inside the set.
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¶ We begin by evaluating:

max
ϕ∈U(h,ϕ̃)

|M(x)| = max

(
max

ϕ∈U(h,ϕ̃)

M(x),

∣∣∣∣∣ min
ϕ∈U(h,ϕ̃)

M(x)

∣∣∣∣∣
)

(10)

¶ To find these extrema note that:
• Other than ϕ(u), the integrands of both integrals in eq.(4) on p.4 have the same sign everywhere.
• Thus, extremal M(x) is obtained by choosing
ϕ(x) = ϕ̃(x) + h or ϕ(x) = ϕ̃(x)− h.

• We consider a special case: ϕ̃(x) = positive constant.
• The results:

max
ϕ∈U(h,ϕ̃)

M(x) = −(h− ϕ̃)x(L− x)

2
(11)

min
ϕ∈U(h,ϕ̃)

M(x) = −(h+ ϕ̃)x(L− x)

2
(12)

Hence:

max
ϕ∈U(h,ϕ̃)

|M(x)| = (h+ ϕ̃)x(L− x)

2
(13)

¶ We are now ready to evaluate the second optimization, on x,
in the expression for the robustness, eq.(9) on p.4.
We find the maximum at x = L/2, resulting in:

max
0≤x≤L

max
ϕ∈U(h,ϕ̃)

|M(x)| =
(h+ ϕ̃)L2

8
(14)

¶ The robustness is the greatest h
at which the maximum bending moment M(x)

does not exceed the critical value Mc.
We find:

(h+ ϕ̃)L2

8︸ ︷︷ ︸
max bending moment

= Mc︸︷︷︸
critical moment

=⇒ ĥ =
8Mc

L2
− ϕ̃ (15)

Design implications: the robustness, ĥ, increases as:
• The beam length L decreases.
• The nominal load ϕ̃ decreases.
• The critical bending moment Mc increases.
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Figure 1: Robustness curve.

¶ Two Properties: Trade-off and zeroing (see fig. 1).

¶ Trade off: robustness vs performance.
• ĥ(Mc) gets worse (decreases) as Mc gets better (decreases).
• This is sometimes called the pessimist’s theorem. Why?
• The slope of the robustness curve expresses the cost of robustness. Why?

¶ Zeroing: Estimated performance has zero robustness:

ĥ(Mc) = 0 if Mc =
ϕ̃L2

8
= estimated bending moment (16)
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2 Statically Loaded Beam: Continued

¶ Knowledge is:
• Power.
• Robustness against surprise and uncertainty.

2.1 Load-Uncertainty Envelope

¶ Different prior information; different uncertainty. Examples:
• Hidden load on left half of beam.
• Flow perpendicular to beam; increasing turbulence in middle region.

¶ Let us now consider different prior information.
Rather than the uniform-bound info-gap model of eq.(1) on p.3,
suppose we have information which indicates that
the uncertain deviation ϕ(x)− ϕ̃(x) varies within an envelope:

U(h, ϕ̃) =
{
ϕ(x) :

∣∣∣ϕ(x)− ϕ̃(x)
∣∣∣ ≤ hψ(x)

}
, h ≥ 0 (17)

where we know:
ϕ̃(x) = nominal load profile.
ψ(x) = load-uncertainty envelope.
and we do not know:
ϕ(x) = actual load profile.
h = uncertainty parameter, horizon of uncertainty.

¶ Examples of envelope function, ψ(x):
• Hidden load on left half of beam.

ψ(x) =

{
1, 0 ≤ x ≤ L/2

0, L/2 < x ≤ L
(18)

• Flow perpendicular to beam; increasing turbulence in middle region.

ψ(x) = sin
πx

L
(19)

¶ As usual with an info-gap model, there are two levels of uncertainty:
• Unknown realization ϕ(x) at info-gap h.
• Unknown horizon of uncertainty, h.

¶ As before:
• The system model is eq.(4) on p.4.
• The failure criterion is eq.(5) on p.4.
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¶ To find the maximum absolute bending moment
we evaluate the max and the min of Mϕ(x).
The max (least negative) is obtained with the lowest possible load profile,
while
The min (most negative) is obtained with the greatest possible load profile.
We find:

M1(x) = min
ϕ∈U(h,ϕ̃)

M(x) (20)

= −L− x

L

∫ x

0

[
ϕ̃(u) + hψ(u)

]
udu

−x

L

∫ L

x

[
ϕ̃(u) + hψ(u)

]
(L− u)du (21)

M2(x) = max
ϕ∈U(h,ϕ̃)

M(x) (22)

= −L− x

L

∫ x

0

[
ϕ̃(u)− hψ(u)

]
udu

−x

L

∫ L

x

[
ϕ̃(u)− hψ(u)

]
(L− u)du (23)

We can express these succintly as:

M1(x) = M
ϕ̃
(x) + hMψ(x) (24)

M2(x) = M
ϕ̃
(x)− hMψ(x) (25)

where M
ϕ̃
(x) and Mψ(x) are defined implicitly in eqs.(21) and (23).

¶ Let us consider a special case:

The nominal load increases towards the center of the beam:

ϕ̃(x) = ϕ̃ sin
πx

L
(26)

where ϕ̃ is a known positive constant.

The uncertainty in the load increases towards the center of the beam:

ψ(x) = sin
πx

L
(27)

¶ Note that ϕ(x), ϕ̃(x) and h all have the same units.
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The functions in eqs.(24) and (25) become:

M
ϕ̃
(x) = −L

2ϕ̃

π2
sin

πx

L
(28)

Mψ(x) =
M
ϕ̃
(x)

ϕ̃
(29)

¶ The least and greatest bending moments at point x are:

M1(x) = −(ϕ̃+ h)
L2

π2
sin

πx

L
(30)

M2(x) = −(ϕ̃− h)
L2

π2
sin

πx

L
(31)

¶ From this we find that the greatest absolute bending moment occurs at the midpoint of the beam:

max
0≤x≤L

max
ϕ∈U(h,ϕ̃)

|M(x)| = (ϕ̃+ h)L2

π2
(32)

¶ To find the robustness, we equate the maximum bending moment to the critical moment and solve
for h:

(ϕ̃+ h)L2

π2
=Mc =⇒ ĥ =

π2Mc

L2
− ϕ̃ (33)

This is quite similar to the uniform-bound case, eq.(15) on p.5.

¶ The two info-gap models we have studied are:

U(h, ϕ̃) =
{
ϕ(x) :

∣∣∣ϕ(x)− ϕ̃(x)
∣∣∣ ≤ h

}
, h ≥ 0 (34)

(Eq.(1) on p. 3.) with robustness (eq.15), p.5:

ĥ =
8Mc

L2
− ϕ̃ (35)

U(h, ϕ̃) =
{
ϕ(x) :

∣∣∣ϕ(x)− ϕ̃(x)
∣∣∣ ≤ hψ(x)

}
, h ≥ 0 (36)

(Eq.(17) on p. 7) with robustness in eq.(33):

ĥ =
π2Mc

L2
− ϕ̃ (37)

• Both of these uncertainty models entail unbounded rate of variation.

• We sometimes have information which constrains the rate of variation of the uncertain function.
We will now develop the tools needed to exploit this information.
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2.2 Fourier Representation of a Function

¶ We interrupt our study of this example to briefly introduce the Fourier representation of a function.
We will use Fourier representations in a new type of info-gap model.

¶ Motivation:
• The info-gap models of eqs.(1), p.3, and (17), p.7, allow unbounded rate of variation.
• We now have new information that constrains the rate of variation.

¶ Let ϕ(x) be an arbitrary but piece-wise continuous function defined on the interval −L ≤ x ≤ L.
Then ϕ(x) can be represented as:

ϕ(x) =
∞∑
n=0

[
bn sin

nπx

L
+ cn cos

nπx

L

]
(38)

¶ Let ϕ(x) be an arbitrary but piece-wise continuous function defined on the interval 0 ≤ x ≤ L.
Then ϕ(x) can be represented as:

ϕ(x) =
∞∑
n=0

cn cos
nπx

L
(39)

¶ How to choose the Fourier coefficients c0, c1, . . . in eq.(39)?
Exploit orthogonality: ∫ π

0
cosmx cosnxdx =

{
π
2 m = n
0 m ̸= n

(40)

To do this, multiply both sides of eq.(39) by cos kπxL and integrate from 0 to L:∫ L

0
ϕ(x) cos

kπx

L
dx =

∞∑
n=0

cn

∫ L

0
cos

kπx

L
cos

nπx

L
dx (41)

=
ckL

2
(42)

So, if we know the function ϕ(x) we can calculate the Fourier coefficients of its expansion:

ck =
2

L

∫ L

0
ϕ(x) cos

kπx

L
dx (43)

¶ These Fourier coefficients have many interesting and important properties. First of all, they mini-
mize the mean squared error between ϕ(x) and its expansion. That is, the cn minimize:

S2 =

∫ L

0

(
ϕ(x)−

∞∑
n=0

cn cos
nπx

L

)2

dx (44)

In fact,
lim
N→∞

S2 = 0 (45)



\lib\besancon2016lec02-002.tex Info-Gap Robustness of a Beam With an Uncertain Load 18/11

Another important property relates to truncated expansions:

ϕ(x) =
N∑
n=0

cn cos
nπx

L
dx (46)

Regardless of the order of the expansion, N :
• Orthogonality yields the same Fourier coefficients, ck.
• These coefficients minimize the mean squared error

of the truncated expansion.

¶ Band-limited function:

ϕ(x) =
n2∑

n=n1

cn cos
nπx

L
(47)

= cTγ(x) (48)

¶ Uncertainty in ϕ(x) is represented as uncertainty in Fourier coefficients c.
• For instance: c in ellipsoid of known shape and unknown size:

U(h, c̃) =
{
ϕ(x) = cTγ(x) : (c− c̃)TW (c− c̃) ≤ h2

}
, h ≥ 0 (49)
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2.3 Geometry of Ellipsoids

¶ Motivation:
• Suppose we have limited 2-dimensional data about an uncertain phenomenon:

(c1, c2)i, i = 1, . . . , n (50)

• These data, when plotted, spread over an ellipse-like cluster around (0,0).
• Future data might extend beyond this cluster.
• How to represent our uncertainty?

¶ Preliminary question:
• Consider the c1 × c2 plane.
• What shape is described by: c21 + c22 = h2? Circle.
• What shape is described by: ac21 + bc22 = h2, where a, b > 0? Ellipse.
• What shape is described by: ac21 + gc1c2 + bc22 = h2, where a, b > 0?

Ellipse if the coefficients define a positive definite matrix.

¶ We need one more digression before we proceed with our example: Geometry of ellipsoids.
The question we study in this subsection is:
What are the directions and lengths of the principal axes of an ellipsoid?

¶ If: c is an N -vector and W is a real, symmetric, positive definite matrix,
then an ellipsoid of c-vectors of dimension N is defined by:

cTWc = h2 (51)

where h is any positive real number.

¶ Simple examples:

h2 = c21w1 + c22w2, W =

(
w1 0
0 w2

)
, wi > 0 (52)

h2 = 2c21 + c1c2 + 2c22, W =

(
2 1
1 2

)
(53)

¶ To answer our question, we must solve an optimization problem.
We must find vectors c which have two properties:
• Length is extremal.
• Lie on the boundary of the ellipsoid.

¶ To optimize the length of c, it is sufficient to optimize the square of the length of c.
So we must optimize:

cT c (54)

Let’s try differential calculus:

0 =
dcT c
dc

= 2c =⇒ c = 0 (55)
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That’s the minimum. What’s the maximum? cT c is unbounded. We need the constraint.

¶ To solve this problem we will use the method of Lagrange multipliers.

¶ A c-vector lies on the ellipsoid if eq.(51) is satisfied.
Expressing this slightly differently, the constraint on c is:

h2 − cTWc = 0 (56)

¶ Define the objective function:
H = cT c− λ(h2 − cTWc) (57)

If we find all c-vectors which
optimize H subject to the constraint,
we will have solved the problem.

¶ Condition for extremum of H:

0 =
∂H

∂c
= 2c− 2λWc (58)

=⇒ (I − λW )c = 0 (59)

which means that:
c = is an eigenvector of W .
1

λ
= the corresponding eigenvalue.

¶ Define the eigenvalues and orthonormal eigenvectors of W :

Wvi = µivi, i = 1, . . . , N (60)

where:
0 < µ1 ≤ · · · ≤ µN and vTmvn = δmn (61)

where δmn is the Kronecker delta function:

δmn =

{
1 m = n
0 m ̸= n

(62)

¶ Now, since c must be an eigenvector of W , we know that:

c = rvi (63)

for some non-zero r and for any i = 1, . . . , N .

Hence the constraint on c is:

h2 = cTWc = r2vTi Wvi = r2µi =⇒ r = ± h
√
µi

(64)

¶ Thus the optimizing c-vectors are:

c = ± h
√
µi
vi, i = 1, . . . , N (65)
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From this we see that:
The directions of the principal semi-axes are:

±v1, . . . , ± vN (66)

The lengths of the principal semi-axes are:

h
√
µ1
, . . . ,

h
√
µN

(67)
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2.4 Fourier Ellipsoid Bounded Uncertain Load

Based on Robust Reliability in the Mechanical Sciences, section 3.2.4.

¶ We now consider a different type of prior information about the uncertain load profile ϕ(x).

¶ About ϕ(x) we know:
• Load vanishes at ends: ϕ(0) = ϕ(L) = 0.
• ϕ(x) is constrained to specific known spatial frequencies.
• The amplitudes of these frequencies are bounded by an ellipsoid of known shape.

¶ About ϕ(x) we do not know:
• The precise amplitudes of the Fourier coefficients.
• The size of the ellipsoid.

¶ In other words, a load profile is represented by:

ϕ(x) =
n2∑

n=n1

cn sin
nπx

L
(68)

= cTσ(x) (69)

where:
c = vector of unknown Fourier coefficients.
σ(x) = vector of known corresponding sine functions.

¶ The uncertainty in ϕ(x) is represented by the following Fourier ellipsoid bound info-gap model:

U(h, 0) =
{
ϕ(x) = cTσ : cTWc ≤ h2

}
, h ≥ 0 (70)

where W is a known, real, symmetric, positive definite matrix.

¶ The system model is obtained by combining eq.(4) on p.4 for the bending moment with eq.(69):

M(x) = cT
[
−L− x

L

∫ x

0
uσ(u)du− x

L

∫ L

x
(L− u)σ(u)du

]
︸ ︷︷ ︸

ζ(x)

(71)

= cT ζ(x) (72)

¶ As before, failure occurs if the bending moment exceeds a critical value, as expressed in eq.(5)
on p.4.

For an example of a Fourier ellipsoid model see: Yakov Ben-Haim and Isaac Elishakoff, Non-Probabilistic models of
uncertainty in the non-linear buckling of shells with general imperfections: Theoretical estimates of the knockdown factor.
A.S.M.E. Journal of Applied Mechanics, Vol. 56, pp 403–410, 1989.
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¶ In order to find the robustness, eq.(9), p.4, we must solve the following optimization:

maxM(x) for cTWc ≤ h2 (73)

which is equivalent to:
max cT ζ for cTWc ≤ h2 (74)

To do this we employ the Cauchy inequality:(
xT y

)2
≤
(
xTx

) (
yT y

)
(75)

with equality iff:
x ∝ y (76)

Let us write:
cT ζ =

(
W 1/2c

)T (
W−1/2ζ

)
(77)

Applying Cauchy’s inequality to the expression on the right:(
cT ζ

)2
≤

[(
W 1/2c

)T (
W 1/2c

)] [(
W−1/2ζ

)T (
W−1/2ζ

)]
(78)

=
[
cTWc

]
︸ ︷︷ ︸

≤h2

[
ζTW−1ζ

]
(79)

From this we conclude that:
max

c∈U(h,0)
M(x) = h

√
ζ(x)TW−1ζ(x) (80)

¶ We can now express the robustness as the greatest value of the uncertainty parameter h at which
the bending moment does not exceed the critical value. We find:

ĥ =
Mc

max0≤x≤L

√
ζ(x)TW−1ζ(x)

(81)

¶ Let us consider a special case:
W is the identity matrix, so the uncertainty ellipsoid is a sphere.

¶ Now ζTWζ becomes:

ζT (x)ζ(x) =
L4

π4

n2∑
n=n1

1

n4
sin2

nπx

L
(82)

The terms in this sum decrease rapidly with n.
Hence the maximum is dominated by the first term:

max
0≤x≤L

√
ζ(x)T ζ(x) ≈ max

0≤x≤L

√
L4

π4
1

n41
sin2

n1πx

L
(83)

=
L2

n21π
2

(84)
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From eq.(81) we find the robustness to be:

ĥ ≈ n21π
2Mc

L2
(85)

¶ Comparing this with the robustness for the uniform-bound info-gap model,
with ϕ̃ = 0, eq.(15) on p.5:

ĥ =
8Mc

L2
(86)

we see that the reliability is substantially enhanced
by constraining the spatial modes of the load function.
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3 Conclusion

§ 3 components of reliability analysis:
1. A system model.
2. A failure criterion.
3. An uncertainty model.

§ Robustness:
• Maximum tolerable uncertainty.
• Basis for design selection.
• Combination of the 3 components.


