Lecture 4 Vibration Suppression

with

Uncertain Load \sim Info-Gap Analysis \sim

Yakov Ben-Haim
Technion
Israel Institute of Technology

Contents

1	Desi	Design of a Vibrating Cantilever		
	1.1	Design Problem	3	
	1.2	Robustness Function	4	
	1.3	Numerical Example	7	
	1 4	Opportuneness Function	0	

1 Design of a Vibrating Cantilever

1.1 Design Problem

¶ We now consider an example:

Vibration control in a cantilever subject to uncertain dynamic excitation.

¶ The cantilever: rigid beam which is clamped at one end.

See transparency of: • Galileo's cantilever.

• Atomic force microscope.

- ¶ The cantilever is the paradigm for:
 - Tall building.
 - · Radio tower.
 - Crane (agoran).
 - Airplane wing.
 - Turbine blade.
 - Diving board.
 - Canon barrel.
 - Atomic force microscope.
 - etc.
- ¶ Central goal in design of the cantilever:

Control of vibration resulting from external loads.

- ¶ Two basic approaches:
 - 1. Prevent vibration by stiffening the beam.
 - 2. Absorb vibration by dissipating energy.
- ¶ These design concepts are **not** mutually exclusive.

They can be implemented together.

¶ These design concepts are relevant in different circumstances as we will see.

1.2 Robustness Function

¶ We will use the **robustness function** to evaluate the design options.

¶ Later we will consider the opportuneness function.

¶ As usual, the three components of the analysis are:

- 1. System model.
- 2. Failure (or performance) criterion.
- 3. Uncertainty model.

¶ We use a simple system model:

Rigid vibration around the clamped base.

 $\theta(t) = \text{angle of deflection of beam [radian]}.$

u(t) = moment of force at base, [Nm].

Equation of motion:

$$J\frac{\mathrm{d}^2\theta(t)}{\mathrm{d}t^2} + c\frac{\mathrm{d}\theta(t)}{\mathrm{d}t} + k\theta = u(t) \tag{1}$$

J= moment of inertia of beam wrt rotation at base, $\int_0^L m(x) x^2 dx$.

c =damping coefficient.

k = rotational stiffness coefficient, [Nm/radian].

¶ Solution of eq. of motion, for:

- Zero initial conditions, $\theta(0) = \dot{\theta}(0) = 0$
- Subcritical damping, $\zeta^2 < 1$:

$$\theta_u(t) = \int_0^t u(\tau) f(t - \tau) \,\mathrm{d}\tau \tag{2}$$

f(t) = impulse response function:

$$f(t) = \frac{1}{J\omega_{\rm d}} e^{-\zeta \omega t} \sin \omega_{\rm d} t$$
 (3)

 $\omega^2 = k/J = \text{squared natural frequency}.$

 $\zeta = \frac{c}{2J\omega} =$ dimensionless damping coefficient.

 $\omega_{\rm d} = \omega \sqrt{1 - \zeta^2} =$ damped natural frequency.

¶ We now consider the uncertainty model.

What we know about the load is:

- The nominal load, $\widetilde{u}(t)$.
- The actual loads are transient:
 - o May vary rapidly,
 - o May attain large deviations from the nominal load.
 - No sustained deviation from the nominal load

We will model load uncertainty with the cumulative energy bound info-gap model:

$$\mathcal{U}(h,\widetilde{u}) = \left\{ u(t) : \int_0^\infty \left[u(t) - \widetilde{u}(t) \right]^2 dt \le h^2 \right\}, \quad h \ge 0$$
(4)

¶ The performance criterion: Deflection must not exceed critical value:

$$|\theta(t)| < \theta_c \tag{5}$$

In terms of reward functions, define:

$$R(q, u) = |\theta(t)| \tag{6}$$

u = uncertain load.

q =design concept, as expressed in damping c and stiffness k.

¶ The robustness function can be defined as:

$$\widehat{h}(q, \theta_{c}) = \max \left\{ h : \left(\max_{u \in \mathcal{U}(h, \widetilde{u})} |\theta_{u}(t)| \right) \le \theta_{c} \right\}$$
(7)

 $\widehat{h}(q, \theta_{\rm c})$ is the maximum tolerable info-gap.

¶ We now evaluate:

$$\max_{u \in \mathcal{U}(h,\widetilde{u})} |\theta_u(t)| \tag{8}$$

¶ Note that $\theta_u(t)$ in eq.(2) on p.4 can be re-written:

$$\theta_{u}(t) = \int_{0}^{t} u(\tau)f(t-\tau) d\tau$$

$$= \int_{0}^{t} \left[u(\tau) - \widetilde{u}(\tau)\right] f(t-\tau) d\tau + \underbrace{\int_{0}^{t} \widetilde{u}(\tau)f(t-\tau) d\tau}_{\widetilde{\theta}(t)}$$

$$(10)$$

where $\widetilde{\theta}(t) =$ nominal deflection.

We need the Schwarz inequality:

$$\left(\int_a^b f(t)g(t)\,\mathrm{d}t\right)^2 \le \int_a^b f(t)^2\,\mathrm{d}t\int_a^b g(t)^2\,\mathrm{d}t\tag{11}$$

with equality iff:

$$f(t) = cg(t) \tag{12}$$

for any non-zero constant c.

Now notice that the first integral in eq.(10) on p.5 is bounded:

$$\left(\int_{0}^{t} \left[u(\tau) - \widetilde{u}(\tau)\right] f(t - \tau) d\tau\right)^{2} \leq \underbrace{\left(\int_{0}^{t} \left[u(\tau) - \widetilde{u}(\tau)\right]^{2} d\tau\right)}_{\mathsf{I}} \underbrace{\left(\int_{0}^{t} f^{2}(t - \tau) d\tau\right)}_{\mathsf{II}} \tag{13}$$

¶ Note:

- From the info-gap model we know that: Integral $I \leq h^2$.
- Integral II is known.
- ullet The info-gap model allows us to choose $u(\tau)$ such that:

$$u(\tau) - \widetilde{u}(\tau) \propto f(t - \tau)$$
 (14)

• Thus, from eqs.(10) and (13):

$$\max_{u \in \mathcal{U}(h,\widetilde{u})} |\theta_u(t)| = h \sqrt{\int_0^t f^2(\tau) \, d\tau} + \left| \widetilde{\theta}(t) \right|$$
 (15)

¶ We can now express the robustness function:

- Equate $\max |\theta_u(t)|$ to θ_c .
- Solve for h, yielding \hat{h} :

$$h\sqrt{\int_0^t f^2(\tau) d\tau} + \left| \widetilde{\theta}(t) \right| = \theta_c \implies \widehat{h}(q, \theta_c) = \frac{\theta_c - \left| \widetilde{\theta}(t) \right|}{\sqrt{\int_0^t f^2(\tau) d\tau}}$$
(16)

unless this is negative, in which case $\hat{h} = 0$.

1.3 Numerical Example

¶ We will consider a specific example. Nominal input $\widetilde{u}(t)$ is square:

$$\widetilde{u}(t) = \begin{cases} \widetilde{u}_o, & 0 \le t \le T \\ 0, & t > T \end{cases}$$
 (17)

The nominal response can be calculated:

$$\widetilde{\theta}(t) = \theta_{\widetilde{u}}(t) = \frac{(1 - \zeta^2)\widetilde{u}_o}{J\omega_d}\gamma(t)$$
(18)

where $\gamma(t)$ is a known function.

For notational convenience we represent integral II in eq.(13) on p.6 as:

$$\sqrt{\int_0^t f^2(t-\tau) \, d\tau} = \frac{1-\zeta^2}{2J\omega_d^{3/2}} \phi(t)$$
 (19)

where $\phi(t)$ is a known function.

Now the robustness function can be expressed:

$$\hat{h}(q, \theta_{\rm c}) = \frac{2J\theta_{\rm c}\omega^2\sqrt{\omega_{\rm d}} - 2\sqrt{\omega_{\rm d}}|\tilde{u}_o\gamma(t)|}{\omega\phi(t)}$$
(20)

Recall: q = decision vector = (c, k), which is embedded in ω and ω_d .

Figure 1: Robustness versus time for three values of the natural frequency $\omega=$ 1, 3 and 4 (bottom to top). Negligible damping: $\zeta=0.01.\ 1=J\theta_c=\widetilde{u}_0.\ T=5.$

¶ $\widehat{h}(q,\theta_{\rm c})$ vs. t is plotted in fig. 1 For various natural frequencies: $\omega=$ 1, 3 and 4 (bottom to top). With negligible damping: $\zeta=0.01$.

- ullet \widehat{h} oscillates but tends to decrease over time.
- ullet At low stiffness ($\omega=1$) the robustness periodically vanishes.
- At moderate and high stiffness ($\omega = 3, 4$)

 \hat{h} oscillates but does not reach zero for the duration shown.

• The transition from rapid to slow decrease in \widehat{h} occurs about at t=T (end of nominal input).

Figure 2: Robustness versus time for three values of the damping ratio $\zeta=0.03,\,0.3,\,0.5$ (bottom to top). Fixed natural frequency $\omega=1.\,1=J\theta_{\rm c}=\widetilde{u}_0.\,T=5.$

¶ Now consider fig. 2, which shows

 $\widehat{h}(q, \theta_c)$ vs. t for various damping ratios:

 $\zeta = 0.03, 0.3 \text{ and } 0.5$

at low stiffness: $\omega = 1$.

- Lowest curve is quite similar to lowest curve in fig. 1.
- With large damping ($\zeta = 0.3$ or 0.5):

 \widehat{h} is small for $t \leq T$

 \widehat{h} is large and nearly constant thereafter.

¶ Comparing figs. 1 and 2:

- Fig. 1 is based on the "stiffness" design concept, with negligible damping.
- Fig. 2 is based on the "dissipation" design concept, with negligible stiffness.
- The choice of a design concept depends on the time frame of interest:
 - $\circ t < T$ calls for "stiffness" design.
 - $\circ t > T$ calls for "dissipation" design.
 - $\circ t > 0$ calls for combined "stiffness" and "dissipation" design.

1.4 Opportuneness Function

¶ We now consider the opportuneness function.

Windfall reward: angular deflection θ_w much less (much better) than the survival requirement, θ_c :

$$\theta_{\rm w} < \widetilde{\theta} < \theta_{\rm c}$$
 (21)

¶ Immunity to windfall, $\widehat{\beta}(q, \theta_w)$: the **least** info-gap at which windfall is **possible**.

¶ Analogous to eq.(7) on p. 5:

$$\widehat{\beta}(q, \theta_{\mathbf{w}}) = \min \left\{ h : \min_{u \in \mathcal{U}(h, \widetilde{u})} |\theta_u(t)| \le \theta_{\mathbf{w}} \right\}$$
 (22)

¶ Smaller is better for $\widehat{\beta}$. Unlike \widehat{h} , for which bigger is better.

¶ Proceeding as in eq.(15) on p. 6 we find:

$$\min_{u \in \mathcal{U}(h,\widetilde{u})} |\theta_u(t)| = -h \sqrt{\int_0^t f^2(\tau) \, \mathrm{d}\tau} + \left| \widetilde{\theta}(t) \right|$$
 (23)

Equating this to $\theta_{\rm w}$ and solving for h yields the opportuneness function, as in eq.(16) on p. 6:

$$-h\sqrt{\int_0^t f^2(\tau) d\tau} + \left| \widetilde{\theta}(t) \right| = \theta_{\mathbf{w}} \implies \widehat{\beta}(q, \theta_{\mathbf{w}}) = \frac{\left| \widetilde{\theta}(t) \right| - \theta_{\mathbf{w}}}{\sqrt{\int_0^t f^2(\tau) d\tau}}$$
(24)

unless this is negative, in which case $\hat{\beta} = 0$.

Why does $\widehat{\beta} = 0$ in this case?

$$\widehat{eta} < 0$$
 only if $\left| \widetilde{ heta}(t)
ight| < heta_{
m w}$.

This means that the **nominal response** $|\widetilde{\theta}(t)|$

is less than the **windfall response** $\theta_{\rm w}$.

Hence windfall is possible even without uncertainty: The immunity to windfall is zero.

 \P Compare $\widehat{\beta}(q,\theta_{\mathrm{w}})$ to the robustness in eq.(16) on p. 6:

$$\widehat{h}(q, \theta_{c}) = \frac{\theta_{c} - \left| \widetilde{\theta}(t) \right|}{\sqrt{\int_{0}^{t} f^{2}(\tau) d\tau}}$$
(25)

We see that the immunity functions are related as:

$$\widehat{\beta}(q, \theta_{\rm w}) = -\widehat{h}(q, \theta_{\rm c}) + \frac{\theta_{\rm c} - \theta_{\rm w}}{\sqrt{\int_0^t f^2(\tau) \,d\tau}}$$
(26)

- ¶ We now consider **antagonism** and **sympathy** of the immunity functions.
- \P The immunity functions $\widehat{\beta}(q,\theta_{\mathrm{w}})$ and $\widehat{h}(q,\theta_{\mathrm{c}})$ are **sympathetic** if they can be improved simultaneously. They are **antagonistic** if either can be improved only at the expense of the other.
- ¶ For example, we can vary ω . The immunity functions are **antagonistic** if:

$$\underbrace{\frac{\partial \hat{h}(q, \theta_{c})}{\partial \omega} > 0}_{\text{improving with } \omega} \quad \text{and} \quad \underbrace{\frac{\partial \hat{\beta}(q, \theta_{w})}{\partial \omega} > 0}_{\text{degenerating with } \omega} \tag{27}$$

or if:

$$\underbrace{\frac{\partial \hat{h}(q, \theta_{c})}{\partial \omega} < 0}_{\text{degenerating with } \omega} \quad \text{and} \quad \underbrace{\frac{\partial \hat{\beta}(q, \theta_{w})}{\partial \omega} < 0}_{\text{improving with } \omega} \tag{28}$$

¶ On the other hand, the immunity functions are **sympathetic** if:

$$\underbrace{\frac{\partial \hat{h}(q, \theta_{c})}{\partial \omega} > 0}_{\text{improving with } \omega} \quad \text{and} \quad \underbrace{\frac{\partial \hat{\beta}(q, \theta_{w})}{\partial \omega} < 0}_{\text{improving with } \omega} \tag{29}$$

or if:

$$\underbrace{\frac{\partial \widehat{h}(q,\theta_{\rm c})}{\partial \omega} < 0}_{\text{degenerating with } \omega} \quad \text{and} \quad \underbrace{\frac{\partial \widehat{\beta}(q,\theta_{\rm w})}{\partial \omega} > 0}_{\text{degenerating with } \omega}$$
 (30)

¶ In short, the immunity functions are **sympathetic** wrt ω if and only if:

$$\frac{\partial \hat{h}(q, \theta_{c})}{\partial \omega} \frac{\partial \hat{\beta}(q, \theta_{w})}{\partial \omega} < 0 \tag{31}$$

- ¶ Return to eq.(26) on p. 10.
 - ullet Question: Under what conditions will \widehat{h} and \widehat{eta} always be sympathetic?
 - Answer: If and only if their optima coincide. See fig. 3.

Figure 3: Sympathetic robustness and opportuneness curves.

¶ When will this occur? Iff

$$\frac{\partial \widehat{\beta}}{\partial q} = 0 = \frac{\partial \widehat{h}}{\partial q} \tag{32}$$

From eq.(26) we see that this will happen only if, at the same q, we also have:

$$\frac{\partial D}{\partial q} = 0 \tag{33}$$

where we define:

$$D = \frac{\theta_{\rm c} - \theta_{\rm w}}{\sqrt{\int_0^t f^2(\tau) \, d\tau}}$$
 (34)

"Usually" this will not happen, which means that, instead of fig. 3, we will have fig. 4.

Robustness or Opportuneness

Figure 4: Robustness and opportuneness curves which are both sympathetic and antagonistic.