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§ Overview:

• Optimal design of cantilever with uncertain load.

• Performance-optimal design has no robustness to uncertainty: Unreliable.

• Trade-off: Performance vs. robustness.

• Moral: Feasible designs are sub-optimal.

• Moral: Designers are “maximizers”, “optimizers”.

The question is: Max-optimizers of what?

• Robustness and safety factors.
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1 PERFORMANCE OPTIMIZATION

��
��
��
��
��

L
✲X

φ̃

❄ ❄ ❄ ❄ ❄ ❄

CANTILEVER WITH
UNIFORM LOAD.

Figure 1: CANTILEVER WITH UNIFORM LOAD.

§ Parameters:

L = beam length (fixed).

W = beam width (uniform, fixed).

ρ = beam density (uniform, fixed).

φ̃ = uniform continuous load density (fixed).

σT (x) = max bending stress in section at x.

T (x) = beam thickness (height) = design function.

§ Performance criteria:

Mass: min
T (x)>0

∫ L

0
T (x) dx (1)

Stress: min
T (x)>0

max
0≤x≤L

|σT (x)| (2)

§ Can we optimize both criteria?

§ These criteria conflict. Trade-off needed.

§ Review exercise 1 on p.14.
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§ Consider beams of mass θ: ∫ L

0
T (x) dx = θ (3)

§ Linear-taper profile minimizes the maximum stress:

T̂ θ(x) =
2θ(L− x)

L2
(4)

§ Resulting min-max bending stress:

σ
T̂θ

=
3φ̃L4

4Wθ2
(5)
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Figure 2: PARETO-OPTIMAL DESIGNS.

§ Where on the plane are the feasible designs? The optimal designs?

§ Designs on the curve are Pareto efficient:

• Pareto efficiency is a short-blanket idea:

Pull up your blanket to warm your nose, your toes get cold!

• Stress can not be reduced w/o increasing mass.

• Mass can not be reduced w/o increasing stress.

§ Designs above the curve are sub-optimal.

§ Are the optimal designs Feasible? Reliable? Robust to uncertainty?

Nope.

§ Review exercise 2 on p.14.
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2 Robustness to Uncertain Load

φ̃(x) = Nominal, typical, design-base, best-estimate

of the load-density profile.

φ̃(x) is undoubtedly wrong.

φ(x) = actual, unknown load-density profile.

Disparity between φ̃(x) AND φ(x) is an info-gap:

Information-Gap:

Disparity between what is known

and what needs to be known

for a good decision.

§ Many info-gap models of uncertainty.

§ We will use:

U(h) =
{
φ(x) :

∣∣∣φ(x)− φ̃(x)
∣∣∣ ≤ h

}
, h ≥ 0 (6)

§ Info-gap model: Family of nested sets of events:

h = 0 =⇒ U(h, φ̃) =
{
φ̃
}

(7)

h ≤ h• =⇒ U(h, φ̃) ⊆ U(h•, φ̃) (8)

h = Horizon of uncertainty.

§ Two levels of uncertainty:

• Unknown load at horizon h.

• Unknown horizon of uncertainty: no worst case.

§ Review exercise 3 on p.14.

§ Robustness, ĥ(T, σc), of design T (x):

• Max horizon of uncertainty without failure.

• How much can we err in φ(x) w/o jeopardizing the beam?

ĥ(T, σc) = max

{
h :

(
max
φ∈U(h)

max
0≤x≤L

|σT (x, φ)|
)
≤ σc

}
(9)
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§ Interpreting the robustness function:

• σc : max acceptable bending stress.

: Design specification.

: Performance-aspiration.

• T (x) : Design.

• ĥ(T, σc) : robustness to uncertainty of design T (x) with aspiration σc.

: “Bigger is better”.

: Design function.

: Preference ranking of alternative designs:

T ≻ T • IF ĥ(T, σc) > ĥ(T •, σc) (10)

§ What θ-mass design maximizes the robustness, with design requirement σc?

The linear taper which min-maxes the stress:

T̂ θ(x) =
2θ(L− x)

L2
(11)

§ Good news or bad news?
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3 Info-gap Robust-Optimal Design

§ Robustness of the optimal taper:

ĥ(T̂ θ, σc) =
4Wθ2σc

3L4
− φ̃ (12)

§ Trade-off: Robustness to uncertainty, ĥ, vs. Performance, σc.
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ĥ(T, σc)

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

DESIGN REQUIREMENT σc

DEMANDING MODEST

σ•

ROBUSTNESS

HIGH

LOW
0

Figure 3: Optimal robustness curve, ĥ(T̂ θ, σc), versus the maximum-stress design
requirement σc.

§ Review exercise 4 on p.14.

§ Infeasible performance-aspiration:

σ• =
3φ̃L4

4Wθ2
(13)

§ Review exercise 5 on p.14.

§ Pareto-efficient min-max bending stress:

σ
T̂θ

=
3φ̃L4

4Wθ2
(14)
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Figure 4: PARETO-OPTIMAL DESIGNS.

§ Clash of performance and robustness:

• Any design on the Pareto surface, e.g. P ,

has no immunity to load uncertainty.

• Only sub-optimal designs, e.g. Q, R, are feasible.

• ‘Good’ is preferable to ‘best’.

§ Review exercise 6 on p.14.
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4 Robustness, Sub-optimal Design and
Safety Factor

§ Sub-optimal design:

T s(x) = T̂ θ(x) + γ, γ > 0 (15)

§ Review exercise 7 on p.14.

§ With max-stress aspiration:

σ• =
3φ̃L4

4Wθ2
(16)

§ Robustness of sub-optimal design is:

ĥ(T s, σ•) =
φ̃L2

4θ2

(
2θ

L
+ γ

)2

− φ̃ (17)

§ γ controls:

• Sub-optimality of design.

• Positivity of robustness.

• Related to classical “safety factor”.

§ Recall:

• h = Horizon of load uncertainty.

• Info-gap model:

U(h, φ̃) =
{
φ(x) :

∣∣∣φ(x)− φ̃(x)
∣∣∣ ≤ h

}
, h ≥ 0 (18)

• ĥ(T s, σ•) = maximum h such that σ ≤ σ• for all loads.

§ Choosing the safety factor:

F = Fraction of nominal load, φ̃.

Demanded robustness:

ĥD = F φ̃.

Choice of γ so that ĥ(T s, σ•) = ĥD:

γ =
2θ

L

(√
1 + F − 1

)
(19)
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§ Optimal design:

F = 0: No safety factor.

ĥ = 0: No robustness.

γ = 0: Pareto-efficiency.

§ Sub-optimal design:

F > 0: Safety.

ĥ > 0: Robustness.

γ > 0: Material inefficiency.
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5 Opportuneness Function

• Two faces of uncertainty:

◦ Pernicious: Potential for failure.

◦ Propitious: Potential for windfall.

• Two measures of performance:

◦ Robustness: Immunity from uncertainty.

◦ Opportuneness: Potential from uncertainty.

• Two strategies for decision:

◦ Satisficing: Enhance robustness. (ĥ)

◦ Windfalling: Exploit opportunity. (β̂)

§ Info-gap model for uncertain load:

U(h, φ̃) =
{
φ(x) :

∣∣∣φ(x)− φ̃(x)
∣∣∣ ≤ h

}
, h ≥ 0 (20)

§ Robustness of design T (x):

ĥ(T, σc) = max

{
h :

(
max
φ∈U(h)

max
0≤x≤L

|σφ,T (x)|
)
≤ σc

}
(21)

Max h without failure for design requirement σc.

§ Design aspirations:

σc = Greatest acceptable stress.

σw = Very low and desirable stress. “Windfall”.

σw ≪ σc

§ Opportuneness of design T (x): min h at which windfall is possible.

β̂(T, σw) = min

{
h :

(
min

φ∈U(h)
max
0≤x≤L

|σφ,T (x)|
)
≤ σw

}
(22)



beam-op001.tex SAFETY FACTORS AND INFO -GAP ROBUSTNESS 12

§ Opportuneness function, β̂(T, σw), is an immunity:

• Immunity to windfall performance.

• “Big is bad” for β̂(T, σw):

T ≻O T • IF β̂(T, σw) <
̂
β(T •, σw) (23)

§ Robustness function, ĥ(T, σc), is an immunity:

• Immunity to failure.

• “Bigger is better” for ĥ(T, σc):

T ≻R T • IF ĥ(T, σc) > ĥ(T •, σc) (24)

§ Review exercise 8 on p.14.

§ Does the robustness preference, ≻R,

agree with the opportuneness preference, ≻O?

Not necessarily.

The immunity functions may be either Sympathetic or Antagonistic.

§ In the present beam example:

β̂(T, σw) = − σw

σc

ĥ(T, σc)
︸ ︷︷ ︸

A

+
(
1− σw

σc

)
φ̃

︸ ︷︷ ︸
B

(25)

§ Sympathetic immunities:

• B does not depend upon design, T (x)

• A is positive.

• Any change in T (x) which

improves the robustness (ĥ grows),

also

improves the opportuneness (β̂ diminishes).

§ Review exercise 9 on p.14.

§ Many examples of antagonistic immunities.

E.g., when “B” does depend on decision.
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§ Immunity functions may change from

antagonistic to sympathetic

in different domains of the problem.
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6 Review Exercises

§ The exercises in this section are not homework problems, and they do not entitle

the student to credit. They will assist the student to master the material in the lecture

and are highly recommended for review and self-study.

1. Explain intuitively why the two design requirements in eqs.(1) and (2) on p.3

conflict.

2. Explain why the negative slope in fig. 2 on p.4 reflects a trade off or conflict

between the two design requirements.

3. Explain why not knowing the value of the horizon of uncertainty, h, implies that

a worst case is not known (p.5).

4. Explain why the positive slope in fig. 3 on p.7 represents a trade off. What

trades off against what?

5. Explain whyσ• in eq.(13) on p.7 is infeasible.

6. σ• in eq.(13) equals R(T̂
θ
) in eq.(14) on p.7. Explain why this equality

represents a “clash between performance and robustness.”

7. Explain why ‘γ > 0’ in eq.(15) on p.9 represents a sub-optimal design.

8. Explain why “big is bad” in eq.(23) and “bigger is better” in eq.(24) on p.12.

9. Explain why the robustness and opportuneness are sympathetic if B in eq.(25)

on p.12 does not depend on the design.


