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1 Preliminary Example: Weibull Reliability Analysis

In this section we consider a preliminary example to motivate our later discussion.

1.1 The Weibull Distribution

The two-parameter Weibull cdf is:

F (t) = 1− e−(λt)α (1)

where λ and α are positive parameters. Typically, 0.5 < α < 4. The pdf is found by
differentiating F (t):

f(t) =
dF

dt
= αλαtα−1e−(λt)α (2)

To understand the physical meaning of the parameters, let us examine the failure rate
function based on adopting the Weibull density as the pdf for failure:

z(t) =
f(t)

1− F (t)
= αλαtα−1 (3)

We see that λ scales the magnitude of the failure rate function: the failure rate increases
as λ increases, so large λ implies large failure rate. α controls the time dependence. z(t)

is increasing, constant, or decreasing in time depending on whether α > 1, α = 1 or α < 1.
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1.2 Weibull Analysis

§ We have a population of M items of the same sort. N < M items have failed at times
t1 ≤ t2 ≤ , . . . , ≤ tN . We wish to determine the best coefficients of a Weibull distribution.
Why? These coefficients tell us what stage of the bathtub curve the population is in: burn-in
(phase 1), central (phase 2) or burn-out (phase 3).

§ The general approach is to use this data to estimate F (t) empirically, and then fit the
parameters. In this section we use only the data on the failed items, and ignore the fact that
M − N items are still functional because we do not know when these items will fail. The
remainder of this lecture is devoted to learning how to incorporate this additional data.

§ To establish the empirical distribution function, note that the times are ranked in in-
creasing order. Thus the fraction 1/N of the sample failed in time t1, a fraction 2/N failed in
time t2 and so on. We could thus estimate F (t) as:

F̂ (ti) =
i

N
, i = 1, . . . , N (4)

This is not a good approximation to the cdf because the data are not at random times but
rather at failure times at which the empirical function makes a step increase.

§ Note that:
F̂ (t) = 1 for t ≥ tn (5)

That clearly is not correct.
§ A better approximation, which is strictly ad hoc, is:

F̂ (ti) =
i− 0.3

N + 0.4
, i = 1, . . . , N (6)

§ We now have an estimate of the distribution at N instants: F̂ (ti), i = 1, . . . , N . We can
use either graphical methods or algebraic methods to find the best estimates for α and λ.

§ The graphical method for estimating the Weibull parameters could be based on noting
that:

ln (− ln[1− F (t)]) = α ln t + α lnλ (7)

Thus, using log-log paper to plot − ln[1 − F (t)] versus ln t would result in a straight line
whose slope is α and whose intercept is α lnλ.

§ An algebraic method could be based on choosing α and λ to minimize the deviation
of the data from the fitted function. This least-squares approach is to choose α and λ to
minimize:

S2 =
N∑

i=1

[
F̂ (ti)− F (ti)

]2
(8)

where F̂ (ti) is the estimate of the cpf, eq.(4) or eq.(6), and F (ti) is the Weibull distribution
evaluated at time ti. We choose α and λ to minimize S2.



censor01.tex CENSORING IN STATISTICAL SAMPLING 4

Number of cycles Failure number
to failure

(t) (i)
430 1
900 2

1090 3
1220 4
1500 5
1910 6
1915 7
2250 8
2600 9
2610 10
3000 11
3390 12
3430 13
3700 14
4050 15

Table 1: Failure data for example in section 1.3.

1.3 Example: Weibull Distribution and Failure Rate Functio n

✲
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ln
(
− ln[1− F̂ (t)]

)

ln tFigure 1: Circles: estimated cdf versus failure time, eqs.(6) and (7). Line: approximate
linear fit with slope = 2.1

§ In table 1 are listed the lifetimes of 15 mechanical switches which failed, from among
a population of 20 switches. The term ‘lifetime’ refers to the number of cycles performed
before failure occurs. All other switches in the population survived more than 4050 cycles.
Is the probability of failure of these switches constant, increasing or decreasing in time?

§ From the 15 data points of table 1 we calculate the empirical cdf F̂ (ti) according to
eq.(6). Then we plot ln[− ln(1 − F (t))] versus ln t as shown in fig. 1. An approximate
“eyeball” linear fit shows the slope to be α = 2.1. So the failure rate function is increasing
in time, since α− 1 > 0.
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2 Introduction to Censoring

(p. 31)

¶ Briefly, “censoring” of data arises when exact lifetimes are known only for a portion of
the individuals under study.

¶ Formally: an observation is censored at L if the exact value of the observation is not
known except that it is ≥ L.

This is called “right censoring”, which is the relevant type of censoring for lifetime data.
“Left censoring” rarely occurs in lifetime data.

¶ Different types of censoring occur, and in each case, for any given pdf (probability
density function), we must determine:

• The sampling distribution (“funkziat dgima”).
• The likelihood function (“funkziat svirut” or “nirut”).

Then we determine the properties of statistical estimators. Usually we have a large sam-
ple so that we can exploit asymptotic properties.

¶ We will consider:
• Type II censoring (section 3).
• Type I censoring (section 7).
• Random censoring (section 8).
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3 Type II Censoring

(pp.32–34)

¶ A type II censored sample is one for which:

1. Only the r smallest observations in a sample of size n are observed, 1 ≤ r ≤ n.

2. r is determined before the data are collected.

¶ Let the n lifetimes of the size-n sample be T1, . . . , Tn.
Their order statistics are:

T(1) ≤ T(2) ≤ · · · ≤ T(n) (9)

In type II censoring we know only the values:

T(1), . . . , T(r) (10)

¶ Let f(t) be the pdf of the lifetime:

f(t) dt = probability of end-of-life T ∈ [t, t+ dt] (11)

The “survivor function” or “probabilistic reliability” is:

S(t) = Prob(T ≥ t) (12)

=
∫

∞

t
f(s) ds (13)
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¶ If T1, . . . , Tn are iid (independent and identically distributed) with lifetime pdf f(t) and
survivor function S(t), then the joint pdf of T(1), . . . , T(r) is:

fn(t(1), . . . , t(r)) =
n!

(n− r)!
f(t(1)) · · · f(t(r))[S(t(r))]

n−r (14)

Explanation:

1.
n!

(n− r)!
= number of ways of choosing n − r out of n items, without regard to the

order in which the items are chosen. The order-free choice holds only for the non-
failed items.

For instance, n = 3 and n − r = 2:
3!

2!
= 3. Let the items be A, B and C. We can

choose the following three couples: {A,B}, {A,C}, {B,C}.

2. S(t(r)) = probability that a specific item will live at least t(r).

3. Thus [S(t(r))]
n−r = probability that n− r specific items will have lifetimes ≥ t(r).

4. Thus
n!

(n− r)!
[S(t(r))]

n−r = probability that n−r items, from a population of size n, will

have lifetimes ≥ t(r).

5. f(t(1)) · · ·f(t(r)) = the joint probability density for the r specific independent items
whose lifetimes are known.

¶ The likelihood function for any parameter model is based on fn(t(1), . . . , t(r)) from
eq.(14).
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4 Estimating the MTBF in the
Exponential Distribution

In this section we discuss estimation of the MTBF for the exponential distribution based on
type II censored data.

4.1 Poisson Process and the Exponential Distribution

¶ Why is the exponential distribution common in lifetime modelling? Because many situa-
tions correspond to the assumptions which underlie its derivation.

¶ The assumptions which underlie the Poisson process are:
• Events occur independently as points on a continuum.
• The average rate of events is constant.

With these assumptions one can show that the probability of exactly n events in duration
(or space) t is:

Pn(t) =
e−λt(λt)n

n!
, n = 0, 1, . . . (15)

¶ The probability of no event occurring in a duration [0, t] is:

P0(t) = e−λt (16)

¶ The probability of one event occurring in an infinitesimal interval [t, t + dt] is:

Prob[t, t+ dt] = λdt (17)

¶ We can combine eqs.(16) and (17) to find the probability that no event occurs during
[0, t] and then one event occurs during [t, t+ dt]:

f(t)dt = P0(t)λdt = e−λtλdt, t ≥ 0 (18)

t is a random variable which expresses the waiting time between events. If these events
are failures, then t is the time between failures (or the time since recovery from the last
failure, if repair takes a positive amount of time).

¶ The mean time between failures is the expectation of t:

E(t) =
∫

∞

0
tf(t) dt =

1

λ
(19)

Thus estimating the parameter of an exponential distribution is precisely the problem of
estimating the MTBF.
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4.2 Maximum Likelihood Estimate for the
Exponential Distribution

Let t1, . . . , tr be a type II censored sample from an exponential distribution:

f(t) = λe−λt, t ≥ 0 (20)

S(t) = e−λt (21)

Thus the joint probability density, eq.(14), is:

fn(t(1), . . . , t(r)) = λr n!

(n− r)!
exp

[
−λ

(
(n− r)t(r) +

r∑

i=1

t(i)

)]
(22)

This is the likelihood function for λ: L(λ|t(1), . . . , t(r)).
The maximum likelihood estimate for the parameter λ, given the observations t(1), . . . , t(r)),

is found by:
λ̂ = argmax

λ
fn(t(1), . . . , t(r)) (23)

Define the “total time on test”:

T = (n− r)t(r) +
r∑

i=1

t(i) (24)

Denote b =
n!

(n− r)!
. Thus:

fn(λ) = bλre−λT (25)

Thus we find the λ which maximizes fn as:

∂fn
∂λ

= be−λT
[
rλr−1 − λrT

]
(26)

= bλr−1e−λT (r − λT ) (27)

Thus the MLE for λ is:
λ̂ =

r

T
(28)
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4.3 Maximum Likelihood Estimate for the
Exponential Distribution: Continued

Let us repeat the previous example, but ignore the censored data. What impact would this
have on the estimate?

In this case, instead of eq.(22), the joint distribution of the non-censored data is:

fn(t(1), . . . , t(r)) = λr exp

[
−λ

r∑

i=1

t(i)

]
(29)

Define:

To =
r∑

i=1

t(i) (30)

Thus:
fn(t(1), . . . , t(r)) = λre−λTo (31)

Hence, instead of eqs.(26) and (27):

∂fn
∂λ

= e−λTo

[
rλr−1 − λrTo

]
(32)

= λr−1e−λTo(r − λTo) (33)

Thus the MLE for λ is, instead of eq.(28):

λ̂o =
r

To

(34)

We see that ignoring the censored data increases the estimate of λ and decreases the
estimated MTBF:

To ≤ T = To + (n− r)t(r) =⇒ λ̂o ≥ λ̂ =⇒
1

λ̂o

≤
1

λ̂o

(35)

with strict inequality unless there are no censored data.
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5 Confidence Intervals for the Exponential MTBF

¶ Recall our definition in eq.(24) on page 9 of the “total time on test”:

T = (n− r)t(r) +
r∑

i=1

t(i) (36)

T is a random variable — a statistic — and it has a chi squared distribution. Specifically:

2λT ∼ χ2
(2r) (37)

That is, 2λT is distributed as a chi squared random variable with 2r degrees of freedom.
λ in this relation is a constant parameter; the randomness comes from T . However, we

will use this relation to derive something like a confidence interval for our estimate of λ.
¶ Let χ2

(n),p denote the pth quantile of χ2
(n):

Prob(χ2
(n) ≤ χ2

(n),p) = p (38)

Thus 2λT has probability 1− α to fall between χ2
(2r),α

2
and χ2

(2r),1−α
2
. That is:

Prob
(
χ2
(2r),α

2
≤ 2λT ≤ χ2

(2r),1−α
2

)
= 1− α (39)

Thus a two-sided 1− α confidence interval for the random variable 2λT is:

χ2
(2r),α

2
≤ 2λT ≤ χ2

(2r),1−α
2

(40)

✲

✻

0

p(χ2
(2r))

χ2
(2r),1−α

2
χ2
(2r),α

2

α/2α/2
χ2
(2r)

Figure 2: Two-sided confidence interval for 2λT , eq.(40).
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¶ We have stressed that T is the random variable; 2λ is just a constant. So we really
cannot simply manipulate eq.(40) and say that a 1− α confidence interval for λ is:

χ2
(2r),α

2

2T
≤ λ ≤

χ2
(2r),1−α

2

2T
(41)

We do not have a probability distribution for λ which in fact is not a random variable.
But what can we say about the interval in eq.(41)?
¶ We can think of eq.(41) as a likelihood interval for λ in the same way that we think of

r/T as a maximum likelihood estimate of λ, eq.(28) on p. 9.
That is, given an observed value of T , the “likely” or “reasonable” value for λ is the MLE

of eq.(28) and the 1− α likelihood interval of λ is eq.(41).

Example 1 Consider a type-II censored sample of size r = 8 from a population of size
N = 12, with censored data t(1), . . . , t(8) = 31, 58, 157, 185, 300, 470, 497, 673 hours. The
total time on test, eq.(24), is T = 5063 hours. Thus the MLE estimate of λ is λ̂ = r/T =

1.58× 10−3.
We construct a 0.95 likelihood interval as follows. The quantiles of χ2

(16) are:

χ2
(16),0.025 = 6.91 (42)

χ2
(16),0.975 = 28.8 (43)

Thus, since 2λT ∼ χ2
(16):

0.95 = Prob
(
6.91 ≤ χ2

(16) ≤ 28.8
)
= Prob (6.91 ≤ 2λT ≤ 28.8) (44)

Hence the 0.95 likelihood interval for λ is:
(
6.91

2T
≤ λ ≤

28.8

2T

)
=
(
1.36× 10−3 ≤ λ ≤ 2.84× 10−3

)
(45)

Note that λ̂ is in the 0.95 likelihood interval, but it is not in the middle.
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¶ Sometimes we wish to estimate a likelihood interval for a quantity related to λ. Two
examples:

• The survival function:
S(t) = 1− F (t) = 1− e−λt (46)

• The pth quantile of the lifetime distribution, tp:

Prob(t ≤ tp) = p (47)

So, for the exponential distribution:

F (tp) = p =⇒ 1− e−λtp = p =⇒ tp = −
ln(1− p)

λ
(48)

In each case, S(t) and tp, the new quantity is a 1-to-1 function of λ. So, let an α likelihood
interval for λ be:

A ≤ λ ≤ B (49)

Then an α likelihood interval for S(t) is:

1− e−Bt ≤ S(t) ≤ 1− e−At (50)

Similarly an α likelihood interval for tp is:

−
ln(1− p)

B
≤ tp ≤ −

ln(1− p)

A
(51)

Example 2 Consider an hypothesis test based on the data from example 1. Examine the
following null and alternative hypotheses:

H0 : λ = 0.001 hr−1 (52)

H1 : λ > 0.001 hr−1 (53)

From the data we have T = 5063 and we know that 2λT ∼ χ2
(16).

We will evaluate the level of significance, which is the probability, conditioned on H0, of a
more extreme result than that which was observed. A small value of T is evidence against
H0.

So the level of significance is:

α = Prob(T ≤ 5063|H0) (54)

= Prob(2λT ≤ 2× 0.001× 5063|H0) (55)

= Prob(χ2
(16) ≤ 10.126|H0) = 0.15 (56)

This is not small, so we cannot reject H0.
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6 Estimating the Weibull Distribution

6.1 Weibull and Gumbel Extreme Value Distributions

¶ The pdf and cdf of the Weibull distribution are:

f(t) = λβ(λt)β−1e−(λt)β , t ≥ 0 (57)

F (t) =
∫ t

0
f(τ) dτ = 1− e−(λt)β (58)

¶ The failure rate function is:

z(t)dt = Prob of failure in [t, t+ dt] given survival to t (59)

=
f(t)

1− F (t)
(60)

= λβ(λt)β−1 (61)

z(t) is constant, increasing and decreasing in time if β = 1, β > 1, β < 1. See Transparency.
¶ The Weibull distribution is a “limit distribution”. If t1, t2, . . . , tN are independent non-

negative random variables, then define:

T = min
i
{t1, t2, . . . , tN} (62)

T has an asymptotic (for large N) Weibull distribution.
The Weibull distribution is a stochastic “weakest link” model.
¶ The Gumbel extreme value pdf and cdf are:

f(x) =
1

b
exp

[
x− u

b
− exp

(
x− u

b

)]
, −∞ < x < ∞ (63)

F (x) = 1− exp
[
− exp

(
x− u

b

)]
(64)

where the parameters are b > 0 and −∞ < u < ∞.
The “standard” Gumbel distribution has b = 1, u = 0. (Transparency).
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¶ The relation between Weibull and Gumbel is:

If T ∼ Wλ,β then lnT ∼ Gb= 1
β
, u=− lnλ (65)

¶ Moments of the Weibull distribution:

E(t) =
1

λ
Γ

(
1 +

1

β

)
(66)

var(t) =
1

λ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
(67)

¶ Moments of the Gumbel distribution:

E(x) = u− γb, γ = Euler’s constant ≈ 0.5772 (68)

var(x) =
b2π2

6
(69)

The pth quantile is:
xp = u+ b ln[− ln(1− p)] (70)

That is:
Prob(x ≤ xp) = p (71)
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6.2 Point Estimates

¶ The Weibull distribution is an important lifetime model because of its relation to extreme
value distributions.

There is extensive statistical study of the Weibull distribution because in general there is
no 2-dimensional sufficient statistic for estimating its parameters.

¶ Given type II censored data from a sample of size N from a Weibull distribution where
the r smallest observations are:

t1 ≤ · · · ≤ tr (72)

Equivalently define:
xi = ln ti, i = 1, . . . , r (73)

which are the r smallest observations from a sample of size N from a Gumbel distribution.
¶ The joint pdf of x1, . . . , xr is:

f(x1, . . . , xr) = (74)

N !

(N − r)!




r∏

i=1

1

b
e(xi−u)/b

︸ ︷︷ ︸
A

exp
(
−e(xi−u)/b

)

︸ ︷︷ ︸
B



[
exp

(
−e(xr−u)/b

)]N−r

︸ ︷︷ ︸
C

We consider this function, without the binomial coefficient, the “likelihood function” (LHF)
for the parameters u and b, which we denote L(u, b):

L(u, b) = (75)

1

br
exp

(
r∑

i=1

xi − u

b

)

︸ ︷︷ ︸
A

exp



−(N − r)e

xr−u
b

︸ ︷︷ ︸
C

−
r∑

i=1

e
xi−u

b

︸ ︷︷ ︸
B




¶ Define:
r∑

i=1

⋆

wi = (N − r)wr +
r∑

i=1

wi (76)

Now the likelihood function is:

L(u, b) =
1

br
exp




r∑

i=1

xi − u

b
−

r∑

i=1

⋆

exp
(
xi − u

b

)

︸ ︷︷ ︸
BC




(77)

The logarithm is more useful, so the log LHF is:

lnL(u, b) = −r ln b+
r∑

i=1

xi − u

b
−

r∑

i=1

⋆

exp
(
xi − u

b

)
(78)

¶ The maximum likelihood estimates of u and b are obtained from:

0 =
∂ lnL

∂u
(79)

0 =
∂ lnL

∂b
(80)
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These relations lead to transcendental equations for which no analytical solutions exist:

eu =
1

r

(
r∑

i=1

⋆

exi/b

)b

(81)

0 =

∑r
i=1

⋆xie
xi/b

∑r
i=1

⋆exi/b
− b−

1

r

r∑

i=1

xi (82)

Only numerical solutions are available. The same is true for the Weibull formulation.
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7 Type I Censoring

¶ Briefly, type I censoring occurs when the experiments are run only for a fixed duration, L,
so the lifetimes are known only for those individuals whose lifetimes are ≤ L.

¶ More precisely, consider a population of n individuals subjected to periods of known
and predetermined observation L1, . . . , Ln, and with lifetimes T1, . . . , Tn.

The ith individual’s lifetime is observed only if Ti ≤ Li.

For instance, trials stop on a specified date, but different individuals start at different
specified times.

¶ Type I is different from type II in that in type I censoring the number of observed life-
times is a random variable, unlike in type II censoring, as well as the lifetimes themselves.

¶ Notation for type I censoring.
n = number of individuals.

Li = censoring time for the ith individual.

Ti = lifetime for the ith individual.
We don’t necessarily observe Ti. What we observe is ti:

ti = min(Ti, Li) (83)

δi =





1 Ti ≤ Li

0 Ti > Li

(84)

¶ Assumption: The Tis are iid with pdf f(t) and survivor function S(t).
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¶ The joint pdf for ti and δi is:

Prob(ti, δi) = f(ti)
δiS(Li)

1−δi (85)

Explanation:
1.

Prob(ti = Li) = Prob(δi = 0) (86)

= Prob(Ti > Li) (87)

= S(Li) (88)

2. For ti < Li:

Prob(ti|δi = 1) = Prob(ti|Ti < Li) (89)

=
f(ti)

1− S(Li)
(90)

(Recall the definition of conditional probability: P (A|B) =
P (A ∩B)

P (B)
.)

3. Thus:
Prob(ti = Li, δi = 0) = Prob(δi = 0) = S(Li) (91)

and

Prob(ti, δi = 1) = Prob(ti|δi = 1)︸ ︷︷ ︸
f(ti)

1−S(Li)

Prob(δi = 1)︸ ︷︷ ︸
1−S(Li)

(92)

= f(ti) (93)

Combining eqs.(91) and (93) gives eq.(85).

¶ Now given n independent pairs (ti, δi), i = 1, . . . , n, the joint pdf is:

fn(t1, δ1, . . . , tn, δn) =
n∏

i=1

f(ti)
δiS(Li)

1−δi (94)

This is the likelihood function, L(λ).
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¶ Example. Suppose, as before that t is exponentially distributed:

f(t) = λe−λt, t ≥ 0 (95)

S(t) = e−λt (96)

The likelihood function becomes:

L(λ) =
n∏

i=1

(
λe−λti

)δi
e−λti(1−δi) (97)

= λr exp

(
−λ

n∑

i=1

ti

)
(98)

where r =
∑n

i=1 δi is the number of observed “deaths” or failures.
What is the MLE of λ?
Let T =

∑n
i=1 ti, so L(λ) = λre−λT .

Thus:

0 =
dL

dλ
= e−λT

[
rλr−1 − λrT

]
=⇒ λ̂ =

r

T
(99)

This is formally the same as eq.(28) on p. 9, though T is defined differently.

¶ Compare the likelihood functions for types I and II censoring:

LII =
n!

(n− r)!
f(t(1)) · · ·f(t(r))[S(t(r))]

n−r (100)

LI =
n∏

i=1

f(ti)
δiS(Li)

1−δi (101)

LI from eq.(94) on p. 19. LII from eq.(14) on p. 7.
For LI :

• Each observed lifetime (δi = 1) contributed a factor f(ti).
• Each censored lifetime (δi = 0) contributed a factor S(Li).

Thus LI is similar in form to LII , though different in origin and precise structure.
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8 Random Censoring

¶ In type I censoring we assume the censoring times L1, . . . , Ln are known and predeter-
mined.

In random censoring the individuals start at random times, so both the lifetimes and the
censoring times are random.

¶ Define:
Ti = lifetime of ith individual.
Li = censoring time of ith individual.

Assume:
Ti and Li are independent random variables.
T1, . . . , Tn are iid with pdf f(t) and survivor function S(t).
L1, . . . , Ln are iid with pdf g(t) and survivor function G(t).

That is:

Prob(T ) = f(t) (102)

Prob(T > t) = S(t) (103)

Prob(L) = g(t) (104)

Prob(L > ℓ) = G(ℓ) (105)

Define as before:

ti = min(Ti, Li) (106)

δi =





1 Ti ≤ Li

0 Ti > Li

(107)
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The pdf for (ti, δt) is:

Prob(ti = t, δi = 0) = Prob(Li = t, Ti > Li) (108)

= g(t)S(t) (109)

Prob(ti = t, δi = 1) = Prob(Li = t, Ti ≤ Li) (110)

= f(t)G(t) (111)

Combine eqs.(108)–(111) as:

Prob(ti = t, δi) = [f(t)G(t)]δi [g(t)S(t)]1−δi (112)

So, for n individuals with observations (t1, δ1), . . . , (tn, δn), the likelihood function is:

L(λ) =
n∏

i=1

[f(ti)G(ti)]
δi[g(ti)S(ti)]

1−δi (113)

=

(
n∏

i=1

G(ti)
δig(ti)

1−δi

)

︸ ︷︷ ︸
Depends on censored r.v.s

(
n∏

i=1

f(ti)
δiS(ti)

1−δi

)

︸ ︷︷ ︸
Depends on lifetime r.v.s

(114)

It may happen that G and g, which express the censoring random variables, do not de-
pend on parameters of interest. In that case, the likelihood function in eq.(114) is effectively
the same as the likelihood function for type I censoring, eq.(94) on p. 19.


