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1. Robustness and opportuneness. Consider an uncertain scalar function u(t). Adopt the fol-
lowing “minimal requirement” in the definition of robustness:

u(t) ≥ rc for 0 ≤ t ≤ T (1)

Likewise, the condition for “sweeping success” in the definition of the opportuneness is chosen
to be:

u(t) ≥ rw for 0 ≤ t ≤ T (2)

where rw is greater, usually much greater, than rc.

For each of the info-gap models listed below,

(a) Evaluate the robustness ĥ and the opportuneness β̂.

(b) Compare these two immunities by expressing one as a function of the other. Also, note
their different variation with the threshold values, rc and rw.

(c) Explain why “bigger is better” for ĥ, while “big is bad” for β̂.

Uniform bound:
U(h, ũ) = {u(t) : |u(t)− ũ(t)| ≤ h} , h ≥ 0 (3)

Energy bound:

U(h, ũ) =
{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]2 dt ≤ h2

}
, h ≥ 0 (4)

Fourier ellipsoid bound. The uncertain function is expanded in a truncated Fourier series:

u(t) = ũ(t) +
n2∑

n=n1

[an cosnπt+ bn sinnπt] (5)

= ũ(t) + cTφ(t) (6)

where c is the vector of uncertain Fourier coefficients and φ(t) is the vector of corresponding
trigonometric functions. The info-gap model is:

U(h, 0) =
{
u(t) = ũ(t) + cTφ(t) : cTWc ≤ h2

}
, h ≥ 0 (7)

where W is a known, real, symmetric, positive definite matrix.

2. Robustness, opportuneness and reward. Consider an uncertain scalar u for which the re-
ward function is:

R(q, u) = q1u+ q2 (8)

where the coefficients q1 and q2 can be controlled by the decision maker, so that the decision
vector is q = (q1, q2)

T . Small values of R(q, u) are more desirable than large values.

For each of the info-gap models listed in problem 1,

(a) Evaluate the robustness and opportuneness functions, ĥ(q, rc) and β̂(q, rw).

(b) In each case, explore the variation of these immunity functions as the decision vector q is
changed. If q is modified to improve the robustness, does the opportuneness improve or
deteriorate? Do optima exist for the immunity functions? If not, impose constraints on q to
allow an optimum. Do the robust-optimal and opportuneness-optimal decisions agree?
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3. Linear optimization on an ellipsoid. (p.128) Let x be a vector in the N -dimensional ellipsoidal
set:

X =
{
x : xTWx ≤ 1

}
(9)

where W is a real, symmetric, positive definite matrix with eigenvectors u1, . . . , uN and corre-
sponding eigenvalues µ1 ≤ · · · ≤ µN .

Let y be an N -vector of unit length:
yT y = 1 (10)

Find the vector y for which xT y is a maximum for all x in X . We can state this more explicitly as
follows. Define the function:

f(y) = max
x∈X

xT y (11)

What we are seeking is the vector ŷ for which f(y) is a maximum:

f(ŷ) = max
yT y=1

f(y) (12)
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4. Static deflection of a cantilever. (p.130) In many problems the reward function can be ex-
pressed as a linear function of an info-gap uncertain vector. We have seen some examples
already. Here is another example.

Consider a uniform cantilever beam subject to N static point loads applied perpendicular to the
beam axis. The loads all lie in a single plane. The vector of loads is denoted:

f = (f1, . . . , fN )T (13)

The deflection of the free end of the cantilever, y, is linearly related to the loads by:

y = kT f (14)

where k is a column vector of known flexibility coefficients.

The load vector is uncertain and belongs to the following Fourier ellipsoid bound info-gap model:

F (h, f̃) =

{
f :

(
f − f̃

)T
W
(
f − f̃

)
≤ h2

}
, h ≥ 0 (15)

where W is a real, symmetric, positive definite matrix.

(a) If h is given, find the load vector f which results in the maximum end deflection.

(b) If h is given, find the maximum end deflection.

(c) The beam fails if the end deflection exceeds the critical value yc. What is the robustness
function of the beam?

(d) Now consider the choice between two designs with flexibility vectors k1 and k2 for which:

kT1 f̃ > kT2 f̃ (16)

kT1W
−1k1 < kT2 W

−1k2 (17)

What is the meaning of eqs.(16) and (17)? What dilemma is embedded in them? For what
values of yc do you prefer option 1?

(e) Now assume that h is a random variable with a known exponential distribution. Combine
this information with the info-gap uncertainty about the load vector f to evaluate a hybrid
robustness.
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5. Dynamic deflection of a cantilever. Consider a rigid cantilever of length L and mass µ. The
angle θ(t) between the cantilever axis and the support oscillates with linear rotational stiffness
k [Nm/radian]. An external moment of force M(t) is applied to the free end of the cantilever.
For the initial T seconds of oscillation the moment of force varies from the nominal value Mo in
an unknown but bounded manner; after time T the moment vanishes. We can represent the
uncertainty in M(t) with the envelope-bound info-gap model:

U(h,Mo) = {M(t) : |M(t)−Mo| ≤ hψ(t)} , h ≥ 0 (18)

with the envelope function ψ(t) chosen as:

ψ(t) =

{
1, 0 ≤ t ≤ T
0, t ≥ T

(19)

The angular deflection θ(t) of the rigid beam is described by:

Jθ̈(t) + kθ(t) =M(t) (20)

where the moment of inertia of the beam is J = µL2/3.

The system can tolerate deviation of the angular deflection of the beam by no more than θc.
Ideally, the angular deflection is less than a much smaller threshold, θw.

(a) Evaluate the robustness of the system, in terms of the amount of input uncertainty which
the system can tolerate without failing. Consider durations less than T and much longer
than T .

(b) Evaluate the opportuneness of the system, in terms of the amount of input uncertainty
which must be present in order for it to be possible that the beam deviates by no more
than θw. Consider durations less than T and much longer than T .

(c) Consider the stiffness k and the moment of inertia J as decision variables, so q = (k, J)T

is the decision vector. Explore the variation of the robustness and of the opportuneness
with q.

6. Static deflection of a cantilever: continued. (p.132) In some problems the reward function
can be expressed as a quadratic function of an info-gap uncertain vector. We modify problem 4
as an example. Instead of the deflection y in eq.(14), which is a linear performance function, let
us consider:

r = fTV f (21)

r is proportional to an elastic energy of deformation. V is a known, real, symmetric, positive
definite matrix.

Re-examine questions 4a–4c for the following two cases: (a) f̃ = 0. (b) f̃ 6= 0.

7. Flaw-resistant manufacture (p.134). An automatic milling machine is equipped with a sensor
system which detects flaws in the workpiece. When a flaw is detected, the cutting tool is raised
above the surface of the work piece. This lifting mechanism is functional provided that the
cutting tool is raised at least 1mm above the surface within 2 seconds of detecting the flaw.
This is because the height of the workpiece varies by less than 1mm during 2 seconds of feed.
The height of the cutting tool as a function of time develops nominally according to the function:

x̃(t) = ht2 [mm] (22)
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However, there is uncertainty in the response of the lifting mechanism due to wear in the power
chain. In other words, the height as a function of time does not always behave according to
x̃(t). Uncertainty in the height as a function of time is described by the uniform-bound info-gap
model:

U(h, x̃) = {x(t) : |x(t)− x̃(t)| ≤ h} , h ≥ 0 (23)

The uncertainty parameter h describes the inaccuracy in the tool height as a result of wear in
the power chain. What is the robustness of the lifting mechanism? What is the opportuneness
function? What is the interpretation of these immunity functions, and how are they used in
evaluating the nominal performance of the flaw-recovery system?
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8. Quality control. (p.132) A long, thin, cylindrically symmetrical surgical needle is finely milled to
conform to its specified shape, t̃(x). The allowed deviation of the actual thickness t(x) from the
designed thickness t̃(x) is ±D microns throughout the length L of the needle. The manufacturer
guarantees the following two conditions:

(i) The precise dimension of the needle will be verified at each end by direct measurement.
Any needle for which t(0) 6= t̃(0) or t(L) 6= t̃(L) will be rejected. This quality control
measurement is completely accurate (or its accuracy is vastly greater than the allowed
tolerance).

(ii) The deviation of the slope of the surface of the needle from its specified slope is bounded,
in an attempt to exclude bristles and dents. However, the value of the bound on the slope
is unknown.

(a) Formulate an info-gap model for the shape of needles produced to these specifications.

(b) Construct the robustness and opportuneness functions for this manufacturing process.

(c) The manufacturer now proposes to replace the first condition above with the following
extended quality check:

(i′) The precise dimension of the needle will be verified at each end and at N equi-distant
intermediate points by direct measurement. Any needle which deviates from the spec-
ified dimension at any measured point will be rejected.

The second condition, (ii), remains valid. Construct the immunity functions and use them
to choose the number N of measurement points. In particular, study the marginal utility of
the N th measurement.

(d) ‡ What modification of the initial information, and consequently of the info-gap model,
would lead to a more meaningful opportuneness function?

(e) ‡ Modify the quality control specification in item (i) to consider error in the quality control
measurement. Specifically, any needle for which |t(0) − t̃(0)| > εD or |t(L) − t̃(L)| > εD

will be rejected, where 0 ≤ ε ≤ 1. Now repeat questions 8a and 8b for the robustness
function only.
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Figure 1: Platform for problem 9.

9. Stability of a platform. (p.135) A thin rigid beam-like platform is supported from below at its
midpoint by a flexible column which is at elastic equilibrium when the platform is horizontal, as
shown in fig. 1. The flexural stiffness of the elastic column is k [Nm/radian] and it applies a
restoring moment of force M = kθ at the midpoint when the platform is tilted by θ radians. The
width of the platform is 2L [m]. The platform is loaded at its two ends by static forces F and
G which are uncertain but bounded. That is, forces F and G belong to the following info-gap
model of uncertainty:

U(h, 0) = {F, G : |F | ≤ h, |G| ≤ h} , h ≥ 0 (24)

The platform is satisfactorily level if the angle of tilt at static equilibrium is never greater than the
critical value θc:

|θ| ≤ θc (25)

The condition of static equilibrium requires that the moment of force at the midpoint vanish:

0 = FL−GL+ kθ (26)

Determine the robustness and opportuneness functions of the platform. The decision vector
is q = (k, L)T . Study the variation of the immunity functions as these design variables are
changed.

10. Stability of a platform: continued. (p.137) We now modify problem 9 to consider uncertain
distributed loads, f(x) [N/m], −L ≤ x ≤ L, on the platform. Evaluate the robustness and
opportuneness for each of the following info-gap models for uncertainty in the load.

(a) Uniform-bound:

U(h, f̃) =
{
f(x) :

∣∣∣∣f(x)− f̃ cos
πx

L

∣∣∣∣ ≤ h

}
, h ≥ 0 (27)

where f̃ is a known constant.

(b) Fourier ellipsoid bound: The uncertain part of the load profile is a truncated sine series:

f(x) = f̃ cos
πx

L
+

N∑

n=1

cn sin
nπx

L
(28)

= f̃ cos
πx

L
+ cTσ(x) (29)
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where c is the vector of uncertain Fourier coefficients and σ(x) is the vector of sine func-
tions. The info-gap model is:

U(h, f̃) =
{
f(x) = f̃ cos

πx

L
+ cTσ(x) : cTWc ≤ h2

}
, h ≥ 0 (30)

where W is a known, real, symmetric, positive definite matrix.

(c) Different nominal load. How will the answers to questions 10a and 10b change if the
nominal load is:

f̃(x) = f̃ sin
πx

L
(31)
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x = 0

x = L

Stream

Field

Figure 2: Illustration for problem 11.

11. Environmental contamination. The concentration of contaminant, f(x), varies over a farmer’s
field as a function of distance x from a stream passing along one side of the field:

f(x) = f̃ +
N∑

n=1

φnx
n (32)

= f̃ + φT ξ (33)

where φ is the vector of unknown coefficients and ξ is the corresponding vector of powers of x.
The nominal concentration, f̃ , is a known constant. The stream is located at x = 0 and the far
edge of the field is at x = L.

The quantity of contaminant which reaches the stream by the end of the season is:

g = µ

∫ L

0

[
1−

(
x

L

)ν]
f(x) dx (34)

where µ and ν are positive constants which reflect absorption and transport properties of the
soil, and which can be influenced in known ways by treating the field.

The water in the stream is potable if the quantity of contaminant does not exceed the value gc,
but it is highly desirable that the quantity of contaminant not exceed the far lower value gw.

For the Fourier ellipsoid bound info-gap model specified below, determine the robustness and
opportuneness functions and study their behavior as a function of the decision variables µ

and ν. Discuss the choice of these variables. Consider the antagonism and sympathy of the
immunity functions, ĥ and β̂.

U(h, f̃) =
{
f(x) = f̃ + φT ξ : φTWφ ≤ h2

}
, h ≥ 0 (35)

where W is a known, real, symmetric, positive definite matrix.

12. Financial investment. Consider an investment problem in which a vector q of investments in
N different options results in a vector x of returns in M different commodities. Investments and
returns are related by:

x = Aq (36)

where the M ×N matrix A is uncertain.

The returns are satisfactory if:

xm ≥ xm,c, m = 1, . . . ,M (37)

The investment results in windfall returns if:

xm ≥ xm,w, m = 1, . . . ,M (38)
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where:
xm,w > xm,c, m = 1, . . . ,M (39)

Construct the robustness and opportuneness functions for each of the info-gap models listed
below. Discuss the use of these immunity functions in evaluating an investment.

Interval bound:

U(h, Ã) =
{
A :

∣∣∣Amn − Ãmn

∣∣∣ ≤ h, m = 1, . . . ,M, (40)

n = 1, . . . , N
}
, h ≥ 0

Row-wise ellipsoid bound: For any matrix R, let Rm be a row vector denoting the mth row of R.

U(h, Ã) =
{
A = Ã+R : RmWRT

m ≤ h2, m = 1, . . . ,M
}
, h ≥ 0 (41)

where W is a known, real, symmetric, positive definite matrix.
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13. (p.144) Satellite targeting.

(a) A satellite is launched from point L directly at a stationary target located a distanceD away
at point T . The satellite moves in a single plane, but the slope of the satellite trajectory,
with respect to the line LT , varies in an unknown manner during flight. The satellite carries
a payload of photographic devices, which are effective only if the satellite-target distance
is no greater than rc as the satellite passes the target. The payload is highly effective if the
fly-by distance is as small as rw. Evaluate the robustness and opportuneness functions.

(b) Now consider a slightly more complex situation. The satellite is initially launched at an
angle below the line from L to T and at a known slope s̃ with respect to the line from L to
T . The slope of the satellite trajectory deviates in flight from s̃ in an unknown manner. The
mission fails if the satellite passes too far from the target or too near to it. That is, failure
occurs if the satellite-target distance is greater than rc,2 or less than rc,1 as the satellite
passes the target, where rc,1 < rc,2. Evaluate the robustness function.

(c) Continue part (13b) and consider opportuneness. The mission is highly successful if the
satellite passes no farther than rw,2 from the target, and no closer than rw,1. These values
are related as:

rc,1 < rw,1 < rw,2 < rc,2 (42)

Evaluate the opportuneness function.
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14. ‡ Heat conduction. (p.148) Consider an unknown one-dimensional heat source, g(x) [W/m],
distributed along x between +1 and −1. The temperature distribution is T (x) degrees K. The
source is thermally insulated along its length, and cooled only at each end. The heat-source
density function, g(x), is uncertain and belongs to an info-gap model.

Safe operation requires that the central temperature be less than a critical value:

T (0) ≤ Tc (43)

We are able to control the end temperatures, T (±1).

The differential equation for heat conduction along the axis of the source is:

0 =
d2T (x)

dx2
+
g(x)

k
(44)

where k is the thermal conductivity, in units of W·m/K.

Consider the following two info-gap models.

Uniform bound:
U(h, g̃) = {g(x) : |g(x) − g̃| ≤ h} , h ≥ 0 (45)

where g̃ is a known constant.

Fourier ellipsoid bound:

U(h, g̃) =
{
g(x) = g̃ + cTγ(x) : cTWc ≤ h2

}
, h ≥ 0 (46)

where W is a known, real, symmetric, positive definite matrix and γ(x) is the vector:

γ(x) = (cos πx, cos 2πx, . . . , cosNπx)T (47)

g̃ is a known constant.

(a) Study the robustness and the opportuneness as a function of surface temperature, for
each of the above info-gap models of heat-source uncertainty. Discuss the meaning of
these two immunity functions. Develop general expressions for the immunity functions and
then consider the special case where W is the following diagonal matrix:

W = diag

(
1

n2
, n = 1, . . . , 6

)
(48)

(b) Now consider a specific numerical case. The material is steel, whose thermal conductivity
is k = 17.3 [W·m/K]. The critical temperature is Tc = 400 [K]. The nominal heat-source
density is g̃ = 250 [W/m]. For each of the info-gap models, what range of surface temper-
ature values are very reliable? Very unreliable? Compare the results for the two info-gap
models.
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15. Simple harmonic oscillator. (p.154) The displacement x(t) of an oscillator in simple harmonic
motion is:

mẍ(t) + kx(t) = u(t) (49)

where the mass m and stiffness k are known but the driving force u(t) is uncertain. Assume
that the initial displacement and velocity of the oscillator are both zero.

The energy of the oscillator is proportional to the square of the displacement. Failure occurs if
the energy at a specified time T exceeds a critical value:

x2(T ) ≥ Ec (50)

Note that Ec is in units that are proportional (but not equal) to energy.

The uncertainty in u(t) is represented by the following Fourier ellipsoid bound info-gap model:

u(t) = ũ(t) +
N∑

n=1

φn sin
nπt

T
(51)

= ũ(t) + φTσ(t) (52)

where φ is the vector of uncertain Fourier coefficients and σ(t) is the vector of corresponding
sine functions. The info-gap model is:

U(h, ũ) =
{
u(t) = ũ(t) + φTσ(t) : φTWφ ≤ h2

}
, h ≥ 0 (53)

where W is a known, real, symmetric, positive definite matrix.

(a) Evaluate the robustness function and illustrate its use in choosing the system parameters,
m and k. Assume that the initial displacement and velocity of the oscillator are both zero.

(b) Evaluate the opportuneness function and illustrate its use in choosing the system param-
eters, m and k.
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16. ‡ Two coupled harmonic oscillators. (p.157) Consider two equal masses and three identical
linear springs connected in sequence between two rigid walls as in fig. 3.

spring mass spring mass spring

Figure 3: Mass-spring system for problem 16.

The masses are initially at rest in their equilibrium positions. An uncertain time varying force
u(t) is applied to the righthand mass. Let x1(t) and x2(t) denote the subsequent displacements
of the left and righthand masses.

There are two natural modes of vibration of this system:

(a) In the ‘coherent’ mode the two masses oscillate together from right to left and back again.
In this mode, the masses are always moving in the same direction.

(b) In the ‘anti-coherent’ mode the two masses are always moving in opposite directions:
towards each other or away from each other.

Failure occurs if the amplitude of the incoherent mode exceeds the critical value Ac.

Construct the robustness and opportuneness functions of the system for each of the following
info-gap models of uncertainty in the load:

Uniform bound:
U(h, 0) = {u(t) : |u(t)| ≤ h} , h ≥ 0 (54)

Energy bound:

U(h, 0) =
{
u(t) :

∫ ∞

0
u2(t) dt ≤ h2

}
, h ≥ 0 (55)

Fourier ellipsoid bound:

u(t) =
N∑

n=1

cn sin
nπt

T
(56)

= cTσ(t) (57)

where c is the vector of unknown Fourier coefficients and σ(t) is the vector of corresponding
sine functions.

U(h, 0) =
{
u(t) = cTσ(t) : cTWc ≤ h2

}
, h ≥ 0 (58)

where W is a known, real, symmetric, positive definite matrix.
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1 ✲ 2 ✲ 3 ✲ 5

4

❄

✲f22=
1
2

Figure 4: A 5-task project schedule for problem 17.

17. Project management. (p.161) Consider the 5-task project shown in fig. 4. This project has two
task-paths:

Path 1: 1 −→ 2 −→ 3 −→ 5
Path 2: 1 −→ 2 −→ 4 −→ 5

In path 2, task 4 is initiated when task 2 is half finished, as indicated by f22 = 0.5.

The nominal task durations are:

t̃1 = t̃2 = t̃5 = 1, t̃3 = q, t̃4 = 1− q (59)

where q is a parameter which the project manager is free to choose in the interval [0, 1]. q

represents a valuable resource which must be allocated between tasks 3 and 4.

The uncertainty in the actual task durations is represented by an interval info-gap model:

U(h, t̃) =
{
t :

|tn − t̃n|
t̃n

≤ h, n = 1, . . . , 5

}
h ≥ 0 (60)

The project must be completed within about 4 time units. Construct the robustness and oppor-
tuneness functions and demonstrate their use in choosing q.

18. Project management: continued. Consider a modification of problem 17. If the project com-
pletes in a duration T , then the “reward” is R(T ). R(T ) decreases as T grows to express the
penalty associated with delayed termination. The project owner would very much like to earn
reward as large as rw, and cannot tolerate reward less than rc. Formulate and evaluate the
robustness and opportuneness functions. Indicate the choice of the parameter q. Explain how
the robustness and opportuneness functions can be used to choose aspirations rc and rw.
Compare these results to the solution of problem 17.

19. ‡ Project management: continued. Consider the 16-task project in fig. 5.

1 ✲ 2 ✲ 3 ✲ 4 ✲ 5 ✲ 6 ✲ 7 ✲ 16

8 ✲ 9 ✲ 10✲
f12=

1
2

❄

11 ✲ 12 ✲ 13 ✲ 14 ✲ 15✲ ❄

✻

Figure 5: A 16-activity project schedule for problem 19.
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tn is the duration of the nth task, which is uncertain, and t is the vector of task durations. The
project must be completed within the duration Tc.

The info-gap model for uncertainty in t is:

U(h, t̃) =
{
t :

|tn − t̃n|
t̃n

≤ wnh, n = 1, . . . , N

}
, h ≥ 0 (61)

The nominal durations t̃n and uncertainty weights wn are given in table 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t̃n 1 1 2 3 3 3 2 1 2 3 3 3 1 3 2 1
wn 1 1 1 1 1 1 1 1 1 1 3 2 2 3 2 1

Table 1: Nominal durations and uncertainty-weights for problem 19.

(a) Evaluate the dependence of the path-robustnesses and the overall robustness upon the
participation factor f12 and the nominal duration t̃2 of task 2. Perform numerical calcula-
tions and discuss implications for improving the reliability of the project.

(b) Construct the opportuneness function of the project and evaluate its dependence on the
participation factor f12 and the nominal duration t̃2 of task 2. Discuss the meaning of this
immunity function, and its use, in conjunction with the robustness function, in designing
and managing the project.

(c) Evaluate the dependence of the path-robustnesses and the overall robustness upon the
uncertainty weight w14 of task 14. Perform numerical calculations and discuss implications
for improving the reliability of the project.

(d) We now modify the performance requirement of the project. Time over-runs are allowed
but penalized, while early completion is rewarded. The reward function for completing the
project in duration T is:

R(T ) = R0e
−µ(T−Tc) (62)

where T is the total project duration, and Tc, R0 and µ are known positive constants.

The project manager is instructed to select an “attainable” reward goal rc, and to choose
a “realistic” project duration Tc.

Determine the robustness and opportuneness functions for completion of the project.
Study the variation of these immunity functions with Tc and rc. Explain how these results
assist the project manager in choosing Tc and rc.

20. Control of a production system. The performance of a production system depends on tem-
perature T , pressure P and time θ according to the relation:

y = T − 2P + θ/3 (63)

Define the vectors xT = (T, P, θ) and zT = (1, −2, 1/3). Eq.(63) becomes:

y = zTx (64)

The system operator chooses operating values for T , P and θ, which will be denoted T̃ , P̃ and
θ̃, or collectively: x̃T = (T̃ , P̃ , θ̃).
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The actual implemented value of x can vary in an unknown manner from the selected opera-
tional value x̃. The uncertain deviation of x from x̃ is described by an info-gap model:

U(h, x̃) =
{
x :

∣∣∣∣
xi − x̃i
x̃i

∣∣∣∣ ≤ h, i = 1, 2, 3

}
, h ≥ 0 (65)

The product of the system is unsatisfactory if:

y > yc (66)

where yc is a known value.

(a) Derive an expression for the robustness of this production system, to uncertain variation
of the system parameters.

(b) Consider the choice of the operational value T̃ , which must be selected in the interval
69oC ≤ T̃ ≤ 85oC. What value would you recommend, and why?

21. Reliability of a milling process–1 . (p.165) An automated cutting tool moves at constant hor-
izontal velocity across a work piece. The height y(t) of the tool varies in transit. The desired
height profile is ỹ(t):

ỹ(t) =
n2∑

n=n1

b̃n cos
nπt

T
= b̃

T
γ(t), 0 ≤ t ≤ T (67)

where b̃ is the vector of known Fourier coefficients and γ(t) is the vector of corresponding cosine
functions.

The actual height profile differs from ỹ(t) in an uncertain manner:

y(t) = ỹ(t) +
n2∑

n=n1

bn cos
nπt

T
= ỹ(t) + bTγ(t), 0 ≤ t ≤ T (68)

where b is a vector of unknown Fourier coefficients. Uncertainty in b is represented by the
following info-gap model:

U(h, b̃) =
{
b :

∣∣∣∣∣
bn

b̃n

∣∣∣∣∣ ≤ h, n = n1, . . . , n2

}
, h ≥ 0 (69)

The milling process fails if the cutting tool is too far above the planned height at the end of the
run, t = T . That is, failure is defined as:

y(T )− ỹ(T ) > Dc (70)

(a) Formulate an expression that defines the robustness function.
(b) Derive an explicit algebraic expression for the greatest deviation of the actual height above

the planned height, up to uncertainty h.
(c) Derive an explicit algebraic expression for the robustness function.
(d) Repeat parts 21a–21c if the failure criterion is revised as follows. Failure occurs if the

actual height deviates by more than Dc from the planned height at any time during the
milling run. That is, failure is:

|y(t)− ỹ(t)| > Dc, 0 ≤ t ≤ T (71)
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22. Reliability of robotic motion. (p.166) The arm of a robot moves in the (x, y) plane. The
trajectory of the end effector as a function of time t is specified by:

x(t) = c1(t+ 1) (72)

y(t) =
c2
t+ 1

(73)

for t ≥ 0. The coefficients c1 and c2 are uncertain and the uncertainty is described by the
following info-gap model:

U(h, c̃) = {c : |ci − c̃i| ≤ hc̃i, i = 1, 2} , h ≥ 0 (74)

The values of c̃i are known and positive.

The end effector must reach the following location at specified time t = T :

x̃ = c̃1(T + 1) (75)

ỹ =
c̃2

T + 1
(76)

The robot motion fails if the end-effector location at time T deviates from the desired location
by more than a distance Dc.

(a) Derive an expression for the robustness of the robotic motion.

(b) What is the optimal value of T , from the point of view of robustness? (Note that the final
coordinates, x̃ and ỹ, change as T changes. Thus, we aren’t really concerned with where the
end effector ends up, but just that it meet an object whose position will be (x̃, ỹ).) Does the
robust-optimal duration depend on the critical distance? What is the significance of this?

(c) Now let’s change this to a real tracking problem. An object moves uncertainly on the
plane with (x(t), y(t)) coordinates given by eqs.(72) and (73). The coefficients are uncertain
as represented by the info-gap model of eq.(74). The object will be tracked by the end effector
which moves precisely with coordinates (ξ(t), η(t)). The goal is to satisfice the squared path
error:

∆ =

∫ T

0

(
[x(t)− ξ(t)]2 + [y(t)− η(t)]2

)
dt (77)

We require ∆ ≤ ∆c. We want to choose the end effector’s path. To make things simpler,
let’s suppose the end effector follows the same parametric path as the object, but with possibly
different—known—coefficients:

ξ(t) = γ1(t+ 1) (78)

η(t) =
γ2
t+ 1

(79)

Given γ, determine the robustness of any choice of tracking error ∆c. Show that γ = c̃ is
maximally robust for any ∆c. (Hint: evaluate the inverse of the robustness function.)
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23. Planning machine initialization. (p.169) A manufacturing machine runs continuously, and the
longer it runs, the more it produces. However, the productivity, in terms of number of items
produced per unit time, decreases the longer the machine runs. The total amount produced in
time t is g(t), which is an increasing function whose slope decreases in time. That is, ġ(t) > 0

and g̈(t) < 0. The function g(t) is imperfectly known. An info-gap model for uncertainty in g(t)
is:

U(h, g̃) = {g(t) : ġ(t) > 0, g̈(t) < 0, |g(t)− g̃(t)| ≤ hf(t)} , h ≥ 0 (80)

where g̃(t) and f(t) are known positive functions with positive slope and negative curvature.

You must plan the production schedule for a total time of T hours. If the machine runs contin-
uously for T hours its production will be g(T ). You can plan to stop and initialize the machine
periodically. After each initialization the machine restarts with its initial productivity, which is
high. However, each initialization requires τ hours. You must choose the number of restarts,
assuming that the machine will run for the same duration after each initialization. The goal is to
assure that the total production will not be less than rc. The first initialization of the machine,
like all subsequent initializations, requires τ hours.

(a) Derive an explicit expression for the robustness to uncertainty in the production function,
when the machine is initialized n times during the T hours, assuming that the machine operates
for the same duration after each initialization.

(b) Now assume that:

g̃(t) = b
√
t (81)

f(t) =
√
t (82)

What is the robust-optimal number of initializations?
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24. Efficient fuel allocation. (p. 172) The distance which a vehicle can travel with quantity q of fuel
is:

f(q, c) =
q

1 + cq2
(83)

where c is an uncertain parameter described by the following info-gap model:

U(h, c̃) = {c : |c− c̃| ≤ hc̃} , h ≥ 0 (84)

The vehicle must be able to travel at least a distance fc.

(a) Find an explicit algebraic expression for the robustness of fuel quantity q to uncertainty in
the coefficient c.

(b) Find an explicit algebraic expression for the quantity of fuel quantity q which maximizes the
robustness. Compare this to the value of q which maximizes the distance based on the nominal
value of c and discuss the result.

(c) Show that the robustness curves for different quantities of fuel can cross. What does this
imply for the choice of fuel quantity?
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25. Moments on a robotic arm. (p.173) The angle of rotation of a robotic arm, y, varies according
to the moments Mi applied at the joints according to:

y =
3∑

i=1

kiMi (85)

where ki is a known positive flexibility parameter. The moments Mi are poorly known. The best
estimate of Mi is M̃ i which is positive. The fractional error of Mi is unknown:

∣∣∣∣∣
Mi − M̃ i

M̃ i

∣∣∣∣∣ ≤ h, h ≥ 0 (86)

(a) The angle of rotation must be at least yc. What is the robustness, to uncertainty in the
moments, of the robotic rotation?

(b) In the solution to part (a) you found that the robustness depends on the nominal (antic-
ipated) angle of rotation, kT M̃ . By considering the robustness function, discuss whether it is
desirable to design the robot so that kT M̃ is large or small.

(c) The nominal moments M̃ i can be chosen subject to the constraint:

3∑

i=1

M̃
2

i = µ2 (87)

where µ is known. What choice of the nominal moments maximizes the robustness?
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26. Machine efficiency. (p.174) The efficiency of a machine is described by:

f(q) = q +
c

q
(88)

where q > 0, c̃ > 0 and c is uncertain and described by an info-gap model:

U(h, c̃) = {c : |c− c̃| ≤ hσ} , h ≥ 0 (89)

(a) It is required that f(q) be no less than fc. What is the robustness of the machine to
uncertainty in c, for a given value of q?

(b) The designer can choose q in the interval [q1, q2] What choice of q do you recommend?
How does this compare with the putatively optimal choice of q?
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27. Uncertain lotteries. (p.175) Consider a lottery with two prizes whose values are vℓ > vs. Each
participant wins either the large prize or the small prize. The probability of winning the larger
prize is uncertain; the best estimate of this probability if p̃; and the info-gap model for uncertainty
in the probability is:

U(h, p̃) =
{
p : 0 ≤ p ≤ 1,

∣∣∣∣
p− p̃

p̃

∣∣∣∣ ≤ h

}
, h ≥ 0 (90)

(a) For any critical value of the expected reward vc, such as the cost of a lottery ticket, what is
the robustness, to uncertainty in p̃, of winning at least vc on average?

(b) Now consider a different lottery with prizes v′ℓ > v′s and estimated probability p̃′ of winning
v′ℓ. Furthermore, the estimated average prize is now greater: p̃′v′ℓ + (1− p̃′)v′s > p̃vℓ + (1− p̃)vs.
However, the smaller prize is now even smaller: v′s < vs. The uncertainty of the probability
is represented with the info-gap model of eq.(90), now centered on p̃′. Under what conditions
(e.g., with what values of vc) will you prefer this new lottery? (Consider the crossing of the
robustness curves of these two lotteries.)
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28. Braking system–1. (p.176) Consider a braking system upon which force f(t) acts and for
which the stopping distance is:

s(g, f) =

∫ ∞

0
g(t)f(t) dt (91)

The sign of f(t) can change over time. The estimated braking function is:

g̃(t) = e−µt sinωt (92)

The physics of braking and energy dissipation is complex and poorly understood. An info-gap
model for uncertainty in the braking function is:

U(h, g̃) = {g(t) : |g(t) − g̃(t)| ≤ h} , h ≥ 0 (93)

(a) Given the driving function f(t), and the requirement that the stopping distance not exceed
sc, derive the robustness function.

(b) We must choose between two driving functions, f1(t) and f2(t), where:
∫ ∞

0
|f1(t)|dt <

∫ ∞

0
|f2(t)|dt, s(g̃, f1) > s(g̃, f2) (94)

Use the robustness function to specify the range of sc-values for which each driving function is
preferred.
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29. Ballistics. (p.177) A missile is designed to follow the trajectory:

g̃(x) =
θx(D − x)

D
(95)

where x is the horizontal distance from the launch site and g̃(x) is the height of the trajectory.

(a) The actual trajectory is uncertain due to wind and other disturbances, and is described by
an info-gap model:

U(h, g̃) = {g(x) : |g(x)− g̃(x)| ≤ hx} , h ≥ 0 (96)

Operational considerations require that the strike distance of the missile (which happens when
the height is zero) be no less than Dc. What is the robustness to uncertainty in the trajectory?

(b) The info-gap model of eq.(96) allows unrealistically erratic trajectories. Re-do part (a) with
this info-gap model:

U(h, g̃) =
{
g(x) : g(0) = 0, |g′(x)− g̃′(x)| ≤ hx

D

}
, h ≥ 0 (97)

where the prime implies differentiation. Do you expect the new robustness to be less or greater
than the robustness in part (a)? Might the answer depend on the value of Dc?
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30. Strain energy. (p.178) The strain energy E of a mechanical system is described by:

E = xTx (98)

where x is proportional to a vector of strains that result from a vector f of forces:

x = V f (99)

where V is a known real matrix.

(a) The uncertainty in the forces is described by the following info-gap model:

U(h) =
{
f : fT f ≤ h2

}
, h ≥ 0 (100)

We require that the strain energy not exceedEc. Derive an explicit expression for the robustness
function.

(b) Replace the info-gap model of eq.(100) by the following and derive the robustness function.

U(h) =
{
f : fTWf ≤ h2

}
, h ≥ 0 (101)

W is a known, real, symmetric, positive definite matrix.

(c) Continue from part (b) and suppose that we can design the system by choosing the matrix
V , which we now assume to be a square matrix subject to various physical constraints. For
simplicity we represent these constraints as:

vi > 0,
N∑

i=1

vi = γ (102)

where γ is a known positive constant and vi is the ith eigenvalue of V . Furthermore, to make
things really simple, suppose that V and W are both diagonal matrices. How should we de-
sign the system (that is, choose V ) to maximize the robustness? Present an intuitive physical
interpretation of the result.
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31. Non-linear force-deflection relation (p.181). Equilibrium of a 1-dimensional system is speci-
fied by:

xf = k + kf2 (103)

where x is the deflection, f is the force, which is known to be non-negative, and k is a known
positive constant. The system is safe if x ≤ xc. The nominal force is f̃ , for which the system is
safe. The uncertainty of the actual force is described by an info-gap model:

U(h, f̃) =
{
f : f ≥ 0,

∣∣∣∣∣
f − f̃

f̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (104)

(a) Derive the robustness function if f̃ = 1.

(b) Derive the robustness function if f̃ > 1. Discuss the qualitative difference between the two
solutions.
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32. Embedded expected utility. (p.183) Consider uncertain location along a water pipeline at which
contaminant enters through a crack. Or, uncertain coastal location where an invasive species
enters and endangers the local habitat. Or, uncertain point on a perimeter where a terrorist
attack could occur. We formalize these situations as follows. A random variable x takes values
in the interval 0 ≤ x ≤ 1. For any realization of x, the associated loss is L(x). The probability
density function (pdf) for x is p(x). The expected losses are:

E(L|p) =
∫ 1

0
L(x)p(x) dx (105)

It is required that the expected losses not exceed the critical value Ec:

E(L|p) ≤ Ec (106)

The pdf is uncertain, and its estimated form is p̃(x). The info-gap model for the pdf is:

U(h, p̃) =
{
p(x) : p(x) ≥ 0,

∫ 1

0
p(x) dx = 1, |p(x)− p̃(x)| ≤ hp̃(x)

}
, h ≥ 0 (107)

(a) Given p̃(x) = 2x and L(x) = λ which is constant, develop an algebraic expression for the
robustness function.

(b) Given p̃(x) = 1 and L(x) = x, develop an algebraic expression for the robustness function.

(c) Now we change the story a bit. The loss-function is uncertain, its best estimate is L̃(x),
and the info-gap model for L(x) is:

U(h, L̃) =
{
L(x) : |L(x)− L̃(x)| ≤ hL̃(x)

}
, h ≥ 0 (108)

where L̃(x) ≥ 0 but L(x) can be both negative and positive, representing losses and gains.

The pdf is known and equals:

p(x) =
L̃(x)

∫ 1
0 L̃(x) dx

(109)

The requirement in eq.(106) still holds. Develop an algebraic expression for the robustness
function. Sketch the robustness vs. the critical expected loss, Ec. What do these graphs
indicate about ones’ preferences regarding the loss function?

(d) In continuation to part (c), let us suppose that we can plan the estimated loss function,
L̃(x). The total estimated loss, Λ, is fixed and defined as:

∫ 1

0
L̃(x) dx = Λ (110)

How should we choose the estimated loss function so as to maximize the robustness with
expected loss satisficed at Ec?

‡(e) Now we return to the story in parts (a) and (b), but suppose that the pdf of x is chosen
strategically by an adversary. Specifically, we think (though we don’t know for sure) that the
adversary knows the loss function, and hence knows L̃(x). Let us suppose that he chooses the
pdf to be large where L̃(x) is large. That is, the estimated pdf is:

p̃(x) =
L̃(x)

∫ 1
0 L̃(x) dx

(111)

Optional: Use matlab program fort01.m\Lectures\WShops+ShrtCrs\Brisbane2008\fort01.m to numerically study the
robustness function for different choices of the mean and mean-square.
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However, the adversary may adopt a totally different strategy. The info-gap model for our un-
certainty in the actual pdf is given by eq.(107). Now repeat parts (a) and (b) with this new
p̃(x).
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33. Spatial monitoring, simple. (p.187) The density ρ(x) of some highly undesirable material
(e.g., toxin, invasive species, chemical impurity, etc.) varies along a transect from x = 0 to
x = L. The true value of the total quantity is r(ρ) =

∫ L
0 ρ(x) dx. If r exceeds a very small critical

amount, rc, then remedial action will be taken. You will perform N measurements to verify
that none of this material is present at positions x1, . . . , xN . The density tends to be constant
along the transect, but the actual slope of the density varies by an unknown amount along the
transect. Let ρ′(x) denote the derivative of the density function. Given the measurements, the
following info-gap model represents the spatial uncertainty in the true density function:

U(h) = {
ρ(x) : ρ(xi) = 0, i = 1, . . . , N,

∣∣ρ′(x)
∣∣ ≤ h

}
, h ≥ 0 (112)

(a) Suppose you perform two measurements, one at each end of the interval. Formulate and
evaluate the robustness to spatial uncertainty.

(b) Suppose you perform N + 1 evenly spaced measurements, including one at each end of
the interval. Formulate and evaluate the robustness to spatial uncertainty.

34. Spatial monitoring. (p.187) The density ρ(x) of some material of interest (e.g., rare plants,
valuable minerals, chemical impurity, seismic faults, etc.) varies along a transect from x = 0 to
x = 1. You will perform N measurements, obtaining the results mi = ρ(xi), i = 1, . . . , N . Your
estimate of the mean density is m = (1/N)

∑N
i=1mi. The true value of the average density is

µ =
∫ 1
0 ρ(x) dx. The density tends to be constant, but the actual slope of the density varies by

an unknown amount along the transect. Let ρ′(x) denote the derivative of the density function.
Given the measurements, the following info-gap model represents the spatial uncertainty in the
true density function:

U(h) = {
ρ(x) : ρ(xi) = mi, i = 1, . . . , N,

∣∣ρ′(x)
∣∣ ≤ h

}
, h ≥ 0 (113)

You require that the absolute difference between the estimate, m, and the true value, µ, be no
greater than ε.

(a) Suppose you perform a single measurement at the midpoint, x1 = 1/2. Formulate and
evaluate the robustness to spatial uncertainty.

(b) Suppose you perform two measurements, one at each end of the interval. Formulate and
evaluate the robustness to spatial uncertainty.

35. Investment for bio-diversity. (p.188) You will invest a quantity q of resources in order to
increase the bio-diversity of a nature reserve. The number of new species which will thrive in
the reserve after the investment is:

N(q, u) = u1q + u2q
2 (114)

where the coefficients ui are uncertain. The project is a failure if the number of new species is
less than Nc.

(a) The best estimates of the coefficients ui are ũi, where ũ1 > 0 and ũ2 < 0. These estimates
are highly uncertain and we have no further information other than that u1 ≥ 0 and u2 ≤ 0. Use
the fractional-error info-gap model:

U(h, ũ) =
{
u : max[0, (1− h)ũ1] ≤ u1 ≤ (1 + h)ũ1

(1 + h)ũ2 ≤ u2 ≤ min[0, (1− h)ũ2]

}
, h ≥ 0 (115)
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Evaluate the robustness of investment q with requirement Nc. Discuss the significance of the
possible crossing of the robustness curves.

(b) Now consider additional information. We have an estimate, σi, of the error of the estimated
value ũi. Now use the following modification of the info-gap model in eq.(115):

U(h, ũ) =
{
u : max[0, ũ1 − hσ1] ≤ u1 ≤ ũ1 + hσ1

ũ2 − hσ2 ≤ u2 ≤ min[0, ũ2 + hσ2]

}
, h ≥ 0 (116)

Evaluate the robustness of investment q with requirement Nc and discuss the significance of
the possible crossing of the robustness curves.

1 ✲ 2 ✲ 3 ✲ 5

4

❄

✲f22=
1
2

Figure 6: A 5-task project schedule for problem 17.

36. Project management. Consider the 5-task project shown in fig. 6. This project has two task-
paths:

Path 1: 1 −→ 2 −→ 3 −→ 5
Path 2: 1 −→ 2 −→ 4 −→ 5

In path 2, task 4 is initiated when task 2 is half finished, as indicated by f22 = 0.5.

The nominal task durations are:

t̃1 = 1, t̃2 = 1.3, t̃5 = 1.5, t̃3 = q, t̃4 = 1− q (117)

where q is a parameter which the project manager is free to choose in the interval [0, 1]. q

represents a valuable resource which must be allocated between tasks 3 and 4.

The uncertainty in the actual task durations is represented by an interval info-gap model:

U(h, t̃) =
{
t :

|tn − t̃n|
t̃n

≤ h, n = 1, . . . , 5

}
h ≥ 0 (118)

The project must be completed within about 4 time units. Construct the robustness and oppor-
tuneness functions and demonstrate their use in choosing q.

37. Project management. Consider the 5-task project shown in fig. 4 on p.18. The modification
from problem 17 is that we now consider both allocation between two tasks, and total budget
change. This project has two task-paths:

Path 1: 1 −→ 2 −→ 3 −→ 5
Path 2: 1 −→ 2 −→ 4 −→ 5
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In path 2, task 4 is initiated when task 2 is half finished, as indicated by f22 = 0.5.

The nominal task durations are:

t̃1 = t̃2 = t̃5 = 1, t̃3 = q, t̃4 = Q− q (119)

where both Q (the total budget) and q (the allocation to one task) are parameters which the
project manager is free to choose in the interval [0, Q].

The uncertainty in the actual task durations is represented by an interval info-gap model:

U(h, t̃) =
{
t :

|tn − t̃n|
t̃n

≤ h, n = 1, . . . , 5

}
h ≥ 0 (120)

The project must be completed within about 4 time units. Construct the robustness and oppor-
tuneness functions and demonstrate their use in choosing q.
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38. Estimate spring stiffness with model uncertainty. (p.190) We will use measurements to
estimate the stiffness, k, of a spring with a linear model, where force f is related to displacement
x by f = kx.

(a) Derive the least-squares estimate of k, given n measurements (xi, fi), i = 1, . . . , n.

(b) Now consider model uncertainty. The spring we will measure is different from the actual
spring for which we wish to use the model. We suspect that there might be a cubic term in the
actual spring model: f = kx + k3x

3. However, we will not include this term in the estimated
model, because the measured spring has no cubic term at all. We wish to choose the linear
coefficient, k, so that the mean squared error (MSE) is small even in the presence of a cubic
term. Specifically, we seek a value of k for which the MSE is no greater than Sc, and for which
the robustness to the magnitude of the uncertain cubic term is large. Consider this info-gap
model for uncertainty in the cubic term:

U(h) = {k3 : |k3| ≤ h} , h ≥ 0 (121)

Formulate and derive the robustness function. (Suggestion: derive the inverse of the robustness
function.)
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39. Managing mean and variance. (p.191) The performance of a system is evaluated as ψTx

where ψ is a known vector and x is uncertain. We require that ψTx be small, no larger than a
critical value rc. The mean of x is yµ where y is a non-negative parameter to be chosen and
µ is a known vector. Assume that ψTµ > 0. The covariance matrix of x is 1

y2W where W is a
known positive definite symmetric real matrix. The pdf of x is unknown.

(a) Formulate an info-gap model for uncertainty in x, and derive the robustness function for y.

(b) Find the robust-satisficing choice of y.

(c) Find the choice of y which optimizes the average performance: minimizes ψT (yµ). Com-
pare this with the result in (b): when are the results the same?

(d) Consider the following variance-weighted performance function: ψT (yµ)+ ǫ
y2

1TW1, where
ǫ > 0. Find the choice of y which minimizes this performance function and compare it to the
result in (b): when are the results the same? What are the implications of this?

40. Choosing between two nature reserves. (p.192) You must choose between two nature re-
serves, one carefully studied and well understood, and the other not studied at all. The utility
(e.g., duration until biodiversity will be threatened) is confidently known to be u1 for the first
reserve. For the second reserve the utility is either u0 with probability p0, or u2 with probability
p2, where u0 < u1 < u2.

The utilities u0 and u2 are poorly known. Their best estimates, and rough errors of these
estimates, are ũi and σi, for i = 0 and 2. A fractional-error info-gap model describes the
uncertainties in these estimated utilities:

U(h) =
{
u :

∣∣∣∣
ui − ũi
σi

∣∣∣∣ ≤ h, i = 0, 2

}
, h ≥ 0 (122)

We allow utility to be negative. In some applications we may wish to require non-negative utility,
which would require modification of the info-gap model in eq.(122).

(a) Suppose that you require the expected utility for option 2 to be no less than Ec. Derive an
expression for the robustness function.

(b) The estimated expected utility from the second option is EU(ũ) = ũ0p0 + ũ2p2. Use the
robustness function to assist the choice between the two options if:

• EU(ũ) ≈ u1.

• EU(ũ) ≫ u1.

• EU(ũ) ≪ u1.

(c) Unfortunately, due to delay in making a decision, the first option—with known utility u1—
has been sold and converted into a parking lot. But don’t worry, a third option has opened
up for which the best estimate of the expected utility equals u1. The estimates of the low and
high utilities for this third option are ṽ0 and ṽ2 with rough error estimates s0 and s2. The known
probabilities of low and high utility are p0 and p2 which are the same as before. The estimate of
the expected utility is EU(ṽ) = u1. However, the actual low and high utilities are uncertain, with
info-gap model, analogous to eq.(122):

V(h) =
{
v :

∣∣∣∣
vi − ṽi
si

∣∣∣∣ ≤ h, i = 0, 2

}
, h ≥ 0 (123)

Use the result from part (a) to express the robustness of the third option. Now discuss the
choice between the 2nd and 3rd options in the following two cases:
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• EU(ũ) > EU(ṽ) (so option 2 is expected to be better than option 3), but EU(σ) > EU(s)

(so option 2 is more uncertain than option 3).

• EU(ũ) > EU(ṽ) (so option 2 is expected to be better than option 3), but EU(σ) < EU(s)

(so option 2 is less uncertain than option 3).

(d) Use matlab program natres01.m to explore the implications of different values of estimated
utility, ũ, and errors, σ. Begin by comparing three nature reserves, where ũi is the column vector
of estimated utilities for the ith reserve, and σi is the column vector of estimated errors. The
vector of probabilities of low and high utility is p = (p0, p2). The available information is:

[ũ1 ũ2 ũ3] =

[
20 22 18
25 27 21

]
, [σ1 σ2 σ3] =

[
5 7 4
6 9 6

]
, p = (0.3, 0.7) (124)

Discuss the significance of crossing robustness curves, and consider the importance of antici-
pated expected utility as well as sensitivity to uncertainty. Explore nature reserves with different
ũ’s and σ’s.

(e) Now consider the fact that outcomes can be better than expected: uncertainty can be pro-
pitious. Derive the opportuneness function for utility as large as Ew. Show that if the robustness
curves for reserves i and j do cross, then their opportuneness curves do not cross. Explain
the significance of this for choosing a nature reserve.

Matlab program: \lectures\WShop+ShrtCrs\Brisbane2008\natres01.m
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Rigid beam
△
A (x=0)

❤

B (x=L) (x=2L)

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏ f̃(x)

Figure 7: Rigid beam for problem 41.

41. Trigger mechanism. (p.195) Consider a completely rigid beam of length 2L as shown in fig. 7,
with simple supports A and B at points x = 0 and x = L. The distributed load acts perpendicu-
larly to the beam, with positive force directed downward. The estimated load is:

f̃(x) = µx/L (125)

where µ > 0.

The uncertainty in the load is represented by:

U(h) =
{
f(x) :

∣∣∣∣∣
f(x)− f̃(x)

µ

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (126)

We require that the reaction force at support B be no less than the critical value Rc.

Derive an explicit expression for the robustness function.
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42. Cantilever–1. (p.196) Consider a uniform cantilever beam of length L. The axis of the beam
is along the x axis and the beam is subject to a continuous load applied in the x-y plane. Let ı
denote the unit vector in the x direction, and let  denote the unit vector in the y direction. The
force, in units of N/m, at point x along the beam is:

f(x) = ıF cos θ(x) + F sin θ(x) (127)

where F is a positive constant. The function θ(x) varies along the beam.

The function θ(x) is uncertain. The best estimate is θ̃(x) and the uncertainty is represented by
an info-gap model:

U(h) =
{
θ(x) : 0 ≤ θ(x) ≤ π, |θ(x)− θ̃(x)| ≤ h for all x

}
, h ≥ 0 (128)

Let M(θ) denote the bending moment at x = 0, which depends on the function θ(x). We
require:

|M(θ)| ≤Mc (129)

(a) Given that θ̃(x) = π/2, derive an explicit expression for the robustness function.

(b) Given that θ̃(x) = π, derive an explicit expression for the robustness function.

(c) Now consider a different info-gap model:

U(h) =
{
θ(x) : 0 ≤ θ(x) ≤ π, |θ(x)− θ̃(x)| ≤ h|θ̃(x)| for all x

}
, h ≥ 0 (130)

Given that θ̃(x) = π/2, derive an explicit expression for the robustness function. Use the per-
formance requirement in eq.(129).

(d) Given that θ̃(x) = π, derive an explicit expression for the robustness function. Use the
info-gap model in eq.(130) and the performance requirement in eq.(129).

(e) Compare the expressions for the robustness which were obtained in steps (b) and (d).
Explain the relation between them by considering the info-gap models which were used.

(f) Let ĥ denote the robustness for the generic formulation in eqs.(127)–(129). Now add
the following information: the horizon of uncertainty, h, is a random variable with exponential
probability density function:

p(h) = λe−λh, h ≥ 0 (131)

where λ is a known positive constant. Derive an expression for a lower bound, greater than
zero, on the probability of satisfying eq.(129). Hint: use ĥ.

(g) We now completely change the formulation. Suppose that the load is present as n uncer-
tain point forces f1, . . . , fn at known locations x = (x1, . . . , xn)

T . Let f̃ denote the estimated
load vector, while f is the uncertain true load vector. The uncertainty in the load is represented
by:

U(h) =
{
f :

1

F 2

n∑

i=1

(fi − f̃ i)
2 ≤ h2

}
, h ≥ 0 (132)

where F is a known positive constant. Derive an explicit expression for the robustness, given
the performance requirement in eq.(129). Assume that the nominal bending moment, xT f̃ , is
positive.
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43. Tichonov estimate with model uncertainty. (p.199). We wish to choose the slope, s, of a
linear scalar model:

y = sx (133)

We have a prior estimate of the slope, s̃, and we have data, (xi, yi), i = 1, . . . ,M . The Tichonov
estimate of s minimizes:

T = λ(s̃− s)2 + (1− λ)
1

M

M∑

i=1

(yi − sxi)
2 (134)

where 0 ≤ λ ≤ 1. We will assume that x and y are dimensionless quantities.

(a) Derive an expression for the estimate of s which minimizes T .

(b) Now consider model uncertainty, with two different info-gap models:

U(h) = {y = sx+ u : |u| ≤ h} , h ≥ 0 (135)

U(h) =
{
y = sx+ ux2 : |u| ≤ h

}
, h ≥ 0 (136)

For each info-gap model, derive an expression for the robustness of an estimate of the slope.
How does the robust-satisficing estimate differ between the two models? How do they differ
from the Tichonov estimate? Note that, because x and y are dimensionless, the horizons of
uncertainty in these two info-gap models are also dimensionless. This makes the robustnesses
which are evaluated with these two info-gap models comparable.

If x and y have units, and even if they have the same units, then the units of T in eq.(134) are undefined. This means
that the relative weights of the two terms in T are controlled by the units, not by the value of λ.

If x and y have units then it is be necessary to calibrate the two robustnesses, which requires judgment and cannot be
done uniquely. However, if x and y have units then we also face a different problem, noted in footnote .
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44. One-wheel vehicle on rough terrain, (p.201). Consider a vertically stabilized 1-wheel vehicle
traversing rough terrain. The suspension system is modelled as a 1-dimensional spring. The
vehicle moves at constant horizontal velocity. The vertical displacement of the center of mass
is represented by:

mẍ(t) + kx(t) = ky(t) (137)

where y(t) is the vertical displacement of the terrain.

(a) The nominal profile of the terrain is ỹ(t), and the uncertainty in the terrain is represented
as:

U(h) = {y(t) : |y(t)− ỹ(t)| ≤ sh} , h ≥ 0 (138)

where s is a known positive number. We require that the vertical displacement of the vehicle
not exceed xc. Derive an expression for the robustness.

(b) Consider a different info-gap model. An uncertain spectral representation of the terrain is:

y(t) = ỹ(t) +
N∑

i=1

ci cosωit = ỹ(t) + cT γ(t) (139)

An info-gap model for uncertain spectral coefficients is:

U(h) =
{
y(t) = ỹ(t) + cT γ(t) : cTWc ≤ h2

}
, h ≥ 0 (140)

where W is a known, positive definite, symmetric real matrix. Derive the robustness for the
requirement x ≤ xc.

(c) Now consider the acceleration, which must not exceed a critical value, ac. Derive an
expression for the robustness using the info-gap model in eq.(138). (Hint: use eq.(137), and its
solution for x(t), to express the acceleration.)

(d) Derive the robustness with the info-gap model in eq.(138) and the requirement that x(t) ≥
xl. Consider the special case than t = nπ/ω and compare this to the result of part (a) and
explain the relation between these two robustness functions. Specifically, if a change in design
causes one robustness function to increase, will the other also increase? That is, are they
sympathetic or antagonistic?

See Yakov Ben-Haim and Isaac Elishakoff, 1990, Convex Models of Uncertainty in Applied Mechanics, Elsevier, section
3.2.



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 43

45. Braking system–2. (p.203). Consider a linear braking system for which the stopping distance
is described by:

s(g, f) =

∫ t

0
g(τ)f(t− τ) dτ (141)

where f(·) is the force and g(·) is the system response function. The uncertainty in the force is
described by:

U(h) =
{
f(t) :

∫ t

0
(f(τ)− f̃(τ))2 dτ ≤ h2

}
, h ≥ 0 (142)

The nominal forcing function, f̃(t), is known. It is required that the stopping distance not exceed
the critical value sc.

(a) Derive an explicit expression for the robustness function.

(b) Now consider a special case and choose between two proposed designs.

The nominal forcing function is:
f̃(t− τ) = τ (143)

The two designs are characterized by the following response functions:

g1(τ) = t− τ (144)

g2(τ) = φτ (145)

where φ is a known positive constant.

For what values of sc and φ should one prefer g1 over g2 based on robustness to uncertainty in
the force as described by the info-gap model of eq.(142)?

See also problem 28 on p.27.
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46. Robustness and opportuneness of failure probability, (p.204). The response of a system
to input x is:

f(x) =
a

x
(146)

where a > 0 and x is a random variable with an exponential distribution:

p(x) = λe−λx, x ≥ 0 (147)

The failure criterion is probabilistic. The system fails if f exceeds fc. The system requirement
is that the probability of failure not exceed the critical value, Pfc.

(a) Derive an expression for the probability of failure, assuming that λ and a are known pre-
cisely.

(b) The coefficient a is estimated to equal ã with error approximately s, and a is known to be
positive. However, a may vary due to uncontrolled factors. Derive an expression for the
robustness to uncertainty in a. What is the sign of the slope of the robustness curve? What
does this sign indicate? At what value of critical failure probability does the robustness
become zero?

(c) Continuing part 46b, consider the choice between two systems with parameters:

λ1 < λ2 and s1 > s2 and λ1s1 < λ2s2 (148)

For what values of Pfc do you prefer option 1? Why? What do these three inequalities
mean?

(d) Let Pfw be a lower probability than Pfc. Windfall occurs if the probability is no greater than
Pfw that f exceeds fc. Derive an expression for the opportuneness and discuss its relation
to the robustness derived earlier. Specifically, at what value of Pfc = Pfw do these curves
cross one another, and what is the significance of this?
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47. Extrapolating an S–N curve, (p.206). An S–N curve is the functional relation between the
load amplitude S and the number of cycles to fatigue failure, N . A (very simple and inaccurate)
model is:

S(N) =
a

b+N
(149)

(a) Given observed cycles to failure with corresponding load amplitudes, (Ni, Si), i = 1, . . . ,K,
derive a least-squares estimate of the coefficient a, assuming that b is known.

(b) Let Nmax denote the greatest lifetime which has been observed. We want to predict the load
which will yield a lifetime N0 > Nmax for some specified value of N0.

Let us suppose that eq.(149) accurately describes the S–N curve. Let us furthermore suppose
that the value of a is known precisely. However, we are not sure that the value of b used for
lower lifetimes is still valid when we extrapolate. Let us write eq.(149) as S(N, b).

Suppose that b is estimated at b̃ with approximate error wb, but the true value of b is unknown.
An info-gap model for uncertainty in b is:

U(h) =
{
b :

∣∣∣∣∣
b− b̃

wb

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (150)

The true failure load at lifetime N0 is S(N0, b), described by eq.(149) with known a and uncertain
b. We will extrapolate (predict) the failure load at lifetime N0 by using eq.(149) with a value for
b of our choice, call it bc. We require that the true load at lifetime N0 not exceed the predicted
load by more than ε:

S(N0, b) ≤ S(N0, bc) + ε (151)

Derive an expression for the robustness of the choice bc.
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48. Signal transmission in an uncertain absorbing medium (p.207). A transmitter is located a
distance D from a receiver. The absorptive property of the medium between transmitter and
receiver is represented by a function ρ(x). The strength at the receiver, of a signal of strength t
at the transmitter, is:

r = t exp

(
−
∫ D

0
ρ(x) dx

)
(152)

We require that the signal strength at the receiver be no less than a fraction f of the transmitted
signal, where 0 < f < 1 is specified by the design requirement.

(a) The absorption function is estimated to be constant at the value ρ̃. The error of this estimate
is approximated as σ, but the actual function can vary substantially and we have no reliable or
meaningful worst-case estimate. An info-gap model for uncertainty in the absorption function
is:

U(h) =
{
ρ(x) :

∣∣∣∣
ρ(x)− ρ̃

σ

∣∣∣∣ ≤ h

}
, h ≥ 0 (153)

Derive an explicit expression for the robustness of the transmission. At what value of f does
the robustness become zero? Explain the significance of this value. Explain the significance of
the sign of the slope of the robustness curve for values of f at which the robustness is positive.

(b) The absorption function is estimated to be a sine function:

ρ̃(x) = sin
2πx

D0
(154)

where D0 is a known constant. Negative absorption means amplification.

The error of this estimate is approximated as σ, but the actual function can vary substantially
and we have no reliable or meaningful worst-case estimate. An info-gap model for uncertainty
in the absorption function is:

U(h) =
{
ρ(x) :

∣∣∣∣
ρ(x)− ρ̃(x)

σ

∣∣∣∣ ≤ h

}
, h ≥ 0 (155)

For any transmission distance D (which might differ from D0), derive an explicit expression for
the robustness of the transmission.

49. Let’s play golf (p.207). You will putt a golf ball towards a hole D meters away on a flat grassy
horizontal surface. The velocity on the axis between you and the hole is v1(t), and the velocity
on the perpendicular axis is v2(t), given by:

v1(t) = v1(0) − gt (156)

v2(t) = εv1(t) (157)

g is a constant deceleration due to the grass, and ε is a dimensionless axis-coupling constant.
Both g and ε are uncertain, with estimated values g̃ and ε̃. A fractional-error info-gap model is:

U(h) =
{
g, ε :

∣∣∣∣
g − g̃

g̃

∣∣∣∣ ≤ h,

∣∣∣∣
ε− ε̃

ε̃

∣∣∣∣ ≤ h

}
, h ≥ 0 (158)

We want the ball to go into the hole. This implies two requirements. First, the ball must not
stop before it reaches the hole. Second, when its axial coordinate (the ‘1’ axis) equals D, its
perpendicular coordinate must not exceed the radius of the hole, R. Derive an expression for
the robustness to uncertainty. (Hint: Let x⋆1 denote the axial distance that ball would travel up to
the time at which v1(t) = 0, if there were no hole. The first requirement is x⋆1 ≥ D.)
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50. Search and evasion, 1. (p.209) A hunter is trying to catch an evasive target. The target can
move either left or right (but not both). The probability that the target moves left is p. The hunter
can move either left or right (but not both) and must decide which way to move. The hunter
catches the target if and only if they move in the same direction. The hunter’s decisions are
denoted m = 1 for moving left and m = 0 for moving right. The hunter’s utility is u if the target
is caught, and zero otherwise. Thus the hunter’s expected utility is:

V = mup+ (1−m)u(1 − p) (159)

(a) The hunter’s utility is estimated to be ũ, with error su. The info-gap model for uncertain utility
is:

U(h) =
{
u :

∣∣∣∣
u− ũ

su

∣∣∣∣ ≤ h

}
, h ≥ 0 (160)

The hunter requires utility no less than Vc. Derive an expression for the hunter’s robustness.
Which of the hunter’s strategies is preferred, in terms of robustness to uncertainty?

(b) Now suppose that both the hunter’s utility and the target’s move-probability are uncertain.
The probability is estimated as p̃ with error sp. The info-gap model is:

U(h) =
{
u, p :

∣∣∣∣
u− ũ

su

∣∣∣∣ ≤ h, p ∈ [0, 1],

∣∣∣∣∣
p− p̃

sp

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (161)

The hunter requires utility no less than Vc. Which of the hunter’s strategies is preferred, in terms
of robustness to uncertainty? Suggestion: derive the inverse of the robustness function.



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 48

51. Search and evasion, 2. (p.211) A hunter is trying to catch an evasive target. The target can
move either left or right (but not both) and the consequences of the moves are different (unlike
in problem 50). That is, from the hunter’s point of view, one move might be “bad” and the other
“really bad”. The probability that the target moves left is p. The hunter can move either left or
right (but not both) and must decide which way to move. The hunter catches the target if and
only if they move in the same direction. The hunter’s decisions are denoted m = 1 for moving
left and m = 0 for moving right. The hunter’s utility is u0 if the target is caught moving to the
right, u1 if the target is caught moving to the left, and zero if the target is not caught. Thus the
hunter’s expected utility from taking action m is:

V (m) = mump+ (1−m)um(1 − p) (162)

(a) The hunter’s utilities are estimated to be ũ0 and ũ1, with errors su0 and su1 respectively. The
info-gap model for uncertain utility is:

U(h) =
{
u :

∣∣∣∣
um − ũm
sum

∣∣∣∣ ≤ h, m = 0, 1

}
, h ≥ 0 (163)

The hunter requires utility no less than Vc. Derive an expression for the hunter’s robustness.
Which of the hunter’s strategies is preferred, in terms of robustness to uncertainty?

(b) Now suppose that both the hunter’s utilities and the target’s move-probability are uncertain.
The probability is estimated as p̃ with error sp. The info-gap model is:

U(h) =
{
u, p :

∣∣∣∣
um − ũm
sum

∣∣∣∣ ≤ h, m = 0, 1, p ∈ [0, 1],

∣∣∣∣∣
p− p̃

sp

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (164)

The hunter requires utility no less than Vc. Which of the hunter’s strategies is preferred, in terms
of robustness to uncertainty? Suggestion: derive the inverse of the robustness function.

(c) Now consider the target’s decisions. Suppose the target (T) has studied info-gap theory and
believes that the hunter (H) has also. Furthermore, T believes that H is uncertain only about the
utilities, so T believes that H has solved the problem in part (a) (or part (b) if you prefer), and that
this will underlie H’s decision. T has estimates of H’s estimates of utility, so T can approximately
reproduce H’s robustness calcuations. T’s only concern is not to get caught. What should T
do? Move left or right?

(d) Let us quantitatively extend part (c). Let q denote T’s degree of belief that H uses a robust
satisficing strategy. H’s alternative strategy is to choose the action whose estimated outcome
is predicted to be optimal. Let mrs, which equals either 0 or 1, denote T’s guess of H’s decision
if H is a robust satisficer. Similarly, let mop denote T’s guess of H’s decision if H is an optimizer.
Let n denote T’s decision, where n = 0 or n = 1 means that T moves left or right respectively.
Let wn be a negative number denoting the utility to T of getting caught moving left (n = 0) or
right (n = 1). T’s utility is zero if T is not caught. Let I(x) be an indicator function which equals
1 if x = 0 and zero otherwise. T’s expected utility of making decision n is:

W (n) = qI(n−mrs)wmrs + (1− q)I(n−mop)wmop (165)

T is uncertain about the utilities of getting caught, as reflected in this info-gap model:

U(h) =
{
w :

∣∣∣∣
wm − w̃m

swm

∣∣∣∣ ≤ h, m = 0, 1

}
, h ≥ 0 (166)

T requires utility no less than Wc. Derive an expression for T’s robustness. Which of T’s strate-
gies is preferred, in terms of robustness to uncertainty?
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52. Uncertain truss. (p.214)
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Figure 8: Uncertain truss, problem 52.

Consider the truss in fig. 8, fixed at A and simply supported at B, with vertical loads at C and
D. The members are all straight bars and the joints are all frictionless.

(a) The loads are uncertain as described by:

U(h) =
{
F :

∣∣∣∣∣
Fi − F̃ i

si

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (167)

where si is a positive error estimate. We require that the force in bar AC not exceed the critical
value, Fc. Determine the robustness to uncertainty in the loads.

(b) In continuation of part (a), consider two designs with different values of θ, where 0 < θ1 <

θ2 < π/2. Which design is robust-preferred, as a function of the critical force Fc?

(c) In continuation of part (a), consider two designs with different values of θ and of the error
estimates si. Denote these designs q = (θ, s1, s2) and q′ = (θ′, s′1, s

′
2), where:

0 < θ < θ′ < π/2 and s1 + s2 < s′1 + s′2 (168)

Which design is robust-preferred, as a function of the critical force Fc?

(d) Now consider a more uncertain truss, in which the loads, lengths, and angles are uncertain,
though the members are all straight. The four angles θ in fig. 8 are the same, though the value
of θ is uncertain. The uncertainty is described by:

U(h) =
{
F :

∣∣∣∣∣
Fi − F̃ i

si

∣∣∣∣∣ ≤ h, i = 1, 2,

∣∣∣∣∣
θ − θ̃

sθ

∣∣∣∣∣ ≤ h, θ > 0,

∣∣∣∣∣
L− L̃

sL

∣∣∣∣∣ ≤ h,

}
, h ≥ 0 (169)

where si, sθ and sL are positive error estimates. We require that the force in bar AC not exceed
the critical value, Fc. Derive an expression for the inverse of the robustness to uncertainty in
the loads.

(e) In continuation of part (d), consider the following special case:

F̃ 1 = 1, F̃ 2 = 2, θ̃ = 45◦, s1 = 0.5, s2 = 1, sθ = 5◦ (170)

(i) What is the largest critical load at which the robustness is zero? (ii) What is the robustness
when the critical load is zero? (iii) What is the critical load when the robustness equals 2?
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(f) Once again consider uncertainty only in the loads, and suppose that the difference, F1−F2,
is a random variable, denoted ∆. The estimated pdf of ∆ is p̃(∆), and uncertainty in this pdf is
given by:

U(h) =
{
p(∆) : p(∆) ≥ 0,

∫ ∞

−∞
p(∆) d∆ = 1, |p(∆)− p̃(∆)| ≤ p̃(∆)h

}
, h ≥ 0 (171)

The truss fails if the force in bar AC exceeds the critical value Fc. We require that the probability
of failure not exceed ε. Derive an expression for the robustness. Assume that the estimated
probability of failure, based on p̃(∆), is much less than 1.
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Figure 9: Cantilever for problem 53.

53. Cantilever–2. (p.217) Consider the cantilever in fig. 9. The force F is applied perpendicular to
the elastic beam of length L which is rigidly constrained at the base. The bending stiffness of
the beam is EI and the end deflection is y = FL3/(3EI).

(a) The anticipated force is F̃ , which is positive. The uncertainty in the true force, F , is
represented by the info-gap model:

U(h) =
{
F :

∣∣∣∣∣
F − F̃

σ

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (172)

where σ is known and positive. The performance requirement is that the end deflection be no
less than the critical value yc. Derive an explicit expression for the robustness to uncertainty.

(b) Continue part (a) and compare two designs with different bending stiffnesses and load
uncertainties:

(EI)1 > (EI)2 and σ1 < σ2 (173)

For what values of critical deflection, yc, is design [(EI)1, σ1] preferred over design [(EI)2, σ2]?

(c) Now consider a different performance requirement: the bending moment at the base of the
beam must not exceed the critical value Mc. Use the info-gap model of eq.(172) to derive an
explicit expression for the robustness to uncertainty.

(d) Derive an expression, based on parts (a) and (c), for the robustness to uncertainty when
both of the performance requirements must be satisfied.

(e) Let F be a non-negative random variable with probability density function (pdf) p(F ) whose
estimated form is exponential: p̃(F ) = λe−λF . The uncertainty in the pdf is represented by:

U(h) =
{
p(F ) : p(F ) ≥ 0,

∫ ∞

0
p(F ) dF = 1, |p(F )− p̃(F )| ≤ hp̃(F )

}
, h ≥ 0 (174)

The mechanical system fails if the deflection, y, is less than yc. The performance requirement
is that the probability of failure must not exceed Pc. Derive an explicit expression for the robust-
ness of this performance function, for Pc much less than 1.

(f) Now suppose that N forces, f = (f1, . . . , fN ), are applied perpendicularly to the beam,
where fi is applied at a distance ℓi from the base. As in part (c), the performance requirement
is that the bending moment at the base of the beam must not exceed the critical value Mc. The
nominal force vector is f̃ , and uncertainty is represented as:

U(h) =
{
f : (f − f̃)TW (f − f̃) ≤ h2

}
, h ≥ 0 (175)

where W is a known, positive definite, symmetric matrix. Derive an explicit expression for the
robustness.
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(g) Return to part (a) and denote the robustness ĥy. Suppose that the horizon of uncertainty,
h, is a random variable with exponential distribution: p(h) = λe−λh. The system fails if the end
deflection is less than yc. Derive an upper bound for the probability of failure, as a function of
ĥy. This upper bound is less than one.

(h) Consider the end-loaded beam in fig. 9, where L = 1m and F = 1000N. The end deflection
was measured 5 times with normal noise, and the observed deflections are 0.016, 0.010, 0.013,
0.011 and 0.012m. Use a statistical test to decide between the following two hypotheses:

H0 : EI = 2× 104Nm2 (176)

H1 : EI > 2× 104Nm2 (177)

Do you reject H0 at 0.05 level of significance?

(i) The beam in fig. 9 is loaded repeatedly and the deflection is measured and categorized as
“low”, “medium” or “high”. Under normal conditions the probabilities of these categories are:

plow = 0.35, pmed = 0.55, phigh = 0.10 (178)

In the last batch of loadings the observations are:

nlow = 55, nmed = 75, nhigh = 20 (179)

The null hypothesis is that the conditions are normal. Do you reject the null hypothesis at 0.05
level of significance?
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54. Exposure limit from dose-response data. (p.220) Consider a new and dangerous material.
We will use dose-response data to set a maximum allowed exposure dose in order to keep the
response below a critical value.

(a) Given N observed dose-response pairs, (di, r̃i), determine the least-squares coefficient
assuming a linear homogeneous relation r̃i = cdi. Let d and r̃ denote the vectors of doses and
corresponding observed responses. Denote the least squares estimated coefficient ĉ(r̃).

(b) The observations are from test animals, while our exposure limit will be applied to humans.
We are unsure that the measured data realistically represent human dose-response relations.
In fact, it is suspected that humans are more sensitive than the test animals, but to an unknown
extent. That is, the human response to dose di, denoted ri, is expected to exceed (by an
unknown amount) the response r̃i observed in the test animals. A rough estimate of the human-
animal disparity for dose di is si, but this is not a worst case or upper limit of error. The doses
di are certain. We represent the uncertain disparity between animal and human response by
the following asymmetric fractional-error info-gap model:

U(h) =
{
(di, ri) : 0 ≤ ri − r̃i

si
≤ h, i = 1 . . . N

}
, h ≥ 0 (180)

Let us assume that the dose-response relationship is truly linear and homogeneous, and that
if we had human response data r the least-squares estimated relation ri = ĉ(r)di would be
reliable. If we choose the exposure limit dc, then the maximal response in humans would be
ĉ(r)dc. The largest tolerable response is rc, so we must choose dc so that ĉ(r)dc ≤ rc.

The problem is that we don’t have human response data, r, but rather animal response data,
r̃, where r and r̃ differ by an unknown amount as expressed by eq.(180). For any choice of the
exposure limit, dc, what is the robustness to the unknown disparity between human and animal
response behavior? Use this to choose the exposure threshold.

(c) Suppose that you could reduce the uncertainty about the human-animal disparity by invest-
ing in research. Two different scenarios—the first before research and the second after—have
different uncertainty estimates si. Specifically, scenario 2 is less uncertain than scenario 1, as
expressed by:

(sTd)1 > (sTd)2 (181)

Assume that the doses, d, and the observed animal responses, r̃, are the same in both sce-
narios. The lower uncertainty in scenario 2 may allow you to adopt a larger allowed exposure
dose:

dc1 < dc2 (182)

Use the robustness function to evaluate these two scenarios.
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55. Adaptive force balancing. (p.221) A downward distributed load is applied on a straight unit
interval. Denote the load L(x) for 0 ≤ x ≤ 1. Uncertainty in the load is described by:

U(h) =
{
L(x) :

∣∣∣∣∣
L(x)− L̃

L̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (183)

where L̃ is known and positive. The designer must choose a distributed restoring force directed
upward along the same unit interval. Denote the restoring force R(x) for 0 ≤ x ≤ 1. We require
that the net moment of force around x = 0 not exceed the critical value Mc. Construct the
robustness function for each of the following designs, and discuss your preferences among the
designs:

(a) Designer 1 suggests choosing R(x) = L̃.

(b) Designer 2 suggests an adaptive procedure whereby the restoring force is constant along
the interval, and equal to the average of the actually realized force: R(x) =

∫ 1
0 L(y) dy.

(c) Designer 3 suggests an adaptive procedure whereby the restoring force is constant along
the interval, and equal to the average of the actually realized force: R(x) =

∫ 1
0 L(y) dy. However,

the adaptive procedure introduces additional uncertainty to the load, so eq.(183) is replaced by:

U(h) =
{
L(x) :

∣∣∣∣∣
L(x)− L̃

wL̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (184)

where w > 1 and known.

(d) Designer 4 suggests an adaptive procedure whereby the restoring force is linearly increasing
along the interval, and equal at the midpoint to the average of the actually realized force: R(x) =
2x
∫ 1
0 L(y) dy.

(e) Designer 5 suggests an adaptive procedure whereby the restoring force is linearly decreas-
ing along the interval, and equal at the midpoint to the average of the actually realized force:
R(x) = 2(1 − x)

∫ 1
0 L(y) dy.
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56. Mesh size extrapolation. (p.224) Numerical computation of the response of a complex system
uses a spatial discretization with mesh size x. We are able to calculate only at positive mesh
size, and we estimate the value at zero mesh size by extrapolation.

Given a calculated value, c(x), at mesh size x, the extrapolation to zero mesh size is given by
the relation:

y(x,A, p) = c(x) +Axp (185)

where A and p are constants, p > 0, and one or both are uncertain. Ã and p̃ are known
estimates of A and p. We require that the absolute error of the extrapolation be no greater than
ε: ∣∣∣y(x,A, p) − y(x, Ã, p̃)

∣∣∣ ≤ ε (186)

(a) Assume that p̃ is known to be accurate and consider a fractional error info-gap model for
uncertainty in A:

U(h) =
{
A :

∣∣∣∣∣
A− Ã

Ã

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (187)

Derive an explicit expression for the robustness function.

(b) Now consider the situation in which y(x,A, p) in eq.(185) is an approximation to the cor-
rection extrapolation function y(x), where the functional form of y(x) is unknown. Consider
fractional uncertainty in the form of the extrapolation function:

U(h) =
{
y(x) :

∣∣∣∣∣
y(x)− y(x, Ã, p̃)

y(x, Ã, p̃)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (188)

where y(x, Ã, p̃) is given in eq.(185) where Ã and p̃ are known and p̃ is positive. Derive an
explicit expression for the robustness function.

(c) Now return to the case that eq.(185) is known to be the correct functional form, and suppose
that Ã is known and that only p is uncertain. Use the fractional error info-gap model:

U(h) =
{
p :

∣∣∣∣
p− p̃

p̃

∣∣∣∣ ≤ h, p > 0

}
, h ≥ 0 (189)

Suppose that Ã < 0. Derive an expression for the robustness assuming that 0 < x < 1.

(d) Extend the info-gap model of eq.(187) and consider fractional uncertainty in both parame-
ters, A and p:

U(h) =
{
(A, p) :

∣∣∣∣∣
A− Ã

Ã

∣∣∣∣∣ ≤ h,

∣∣∣∣
p− p̃

p̃

∣∣∣∣ ≤ h, p > 0

}
, h ≥ 0 (190)

Derive an explicit expression for the inverse of the robustness function where Ã and p̃ are known
and p̃ is positive. Assume 0 < x < 1.
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57. Waste water system design. (p.226) The volume of liquid sewage in a processing plant, s,
grows at the constant in-flow rate r [m3/s] and decreases at the constant processing rate ρ

[m3/s]. Thus the volume of sewage at the end of the processing period t is s = (r − ρ)t. The
in-flow rate varies randomly from period to period with an exponential distribution:

p(r) = λe−λr, r ≥ 0 (191)

The exponent, λ, is non-negative and typically equals λ̃, with a typical range of variation ε

though λ may vary even more. Use a fractional-error info-gap model to represent uncertainty in
λ:

U(h) =
{
λ : λ ≥ 0,

∣∣∣∣∣
λ− λ̃

ε

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (192)

We want the volume of sewage in the plant not to exceed the critical value sc. However, the
volume of sewage is a random variable. We require that the sewage volume exceed the critical
value sc with probability no greater than Pc:

Prob(s ≥ sc) ≤ Pc (193)

(a) Evaluate the robustness to uncertainty in λ.

(b) Discuss the preference between two processing plants with different processing rates ρ.
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58. Pipeline replacement. (p.228) We will replace one of two alternative pipelines. The first
pipeline is in poor condition and has higher probability of failure than the second pipeline. How-
ever, the consequence of failure of the second pipeline is greater. The estimated probabilities
of failure are p̃1 and p̃2, and the consequences of failure are positive values, c1 and c2, where:

p̃1 > p̃2, c1 < c2 (194)

The true failure probabilities, p1 and p2, are uncertain. Use a fractional error info-gap model:

U(h) =
{
(p1, p2) : 0 ≤ pi ≤ 1,

∣∣∣∣
pi − p̃i
p̃i

∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (195)

Assume the failure probability of a replaced pipeline is zero.

Let fi = 1 if the ith pipeline is fixed, and let fi = 0 if the ith pipeline is not fixed. We must
choose between two replacement plans f = (f1, f2): either f = (0, 1) or f = (1, 0).

The expected consequence of replacement plan f is:

E(f |p) = (1− f1)p1c1 + (1− f2)p2c2 (196)

We require the expected consequence to be no greater than the critical expected consequence,
Ec. Evaluate the robustness of each plan and discuss the choice between them. In particular,
consider each of the following special cases:

p̃1c1 > p̃2c2 (197)

p̃1c1 < p̃2c2 (198)
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59. Heat flux. (p.230) The heat flux q (W) is linearly related the temperature gradient ∆T (K) and
area A (m2) by the heat transfer coefficient h (W/m2K):

q = hA∆T (199)

We consider implications of uncertainty in the heat transfer coefficient.
(a) Let h̃ be an estimate of the heat transfer coefficient, with estimation error s but suppose no
probability distribution is known. Use a fractional-error info-gap model to represent uncertainty
in h (let α represent the horizon of uncertainty):

U(α) =
{
h : h ≥ 0,

∣∣∣∣∣
h− h̃

s

∣∣∣∣∣ ≤ α

}
, α ≥ 0 (200)

We require that the heat flux be no less than the positive critical value qc. Derive an explicit
algebraic expression for the robustness.
(b) It would be wonderful if the heat flux is as large as qw which is greater than qc. Derive an
expression for the opportuneness function using the info-gap model of eq.(200).
(c) Return to part (a) and compare the following two designs:

h̃1 < h̃2,
h̃1
s1

>
h̃2
s2

(201)

For what values of qc is design 1 preferred over design 2, based on the robustness function?
(d) Now consider the heat transfer coefficient, h, to be a random variable with an exponential
distribution, p(h) = λ exp(−λh). The system fails if the heat flux is less than qc. Derive an
explicit algebraic expression for the probability of failure.
(e) Continuing part (d), let λ̃ be a known estimate of λ, with no other information about the
true value of λ other than that it is positive. Use a fractional-error info-gap model to represent
uncertainty in λ:

U(α) =
{
λ : λ ≥ 0,

∣∣∣∣∣
λ− λ̃

λ̃

∣∣∣∣∣ ≤ α

}
, α ≥ 0 (202)

We require that the probability of failure be no greater than the positive critical value Pc. Derive
an explicit algebraic expression for the robustness.
(f) Now consider heat flux at n points on a surface, with heat transfer coefficients h1, . . . , hn at
these points. The heat flux qj at point j is described by eq.(199) with coefficient hj . Assume
that A∆T is the same at each point. Let h denote the vector of heat transfer coefficients, with
estimated vector h̃. Let W represent a matrix of covariances of the coefficients at different
points. Use the following ellipsoidal-bound info-gap model to represent uncertainty in h:

U(α) =
{
h : (h− h̃)TW−1(h− h̃) ≤ α2

}
, α ≥ 0 (203)

The total heat flux is the sum over the n points: Q =
∑n

j=1 qj. We require that the total heat
flux be no less than the positive critical value qc. Derive an explicit algebraic expression for the
robustness.
(g) Suppose that the heat transfer coefficient, h, is a fixed value and the heat flux is a random
variable described by:

q = hA∆T + ε (204)

where ε is a zero-mean normal random variable with variance σ2, denoted ε ∼ N (0, σ2). Let
q denote the mean of N statistically independent measurements of q. What is the probability



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 59

distribution of q?
(h) Continuing part (g), suppose that the heat transfer coefficient can take one of two values,
either h = h0 or h = h1, where h1 > h0. Consider the following two hypotheses regarding the
value of h:

H0 : h = h0 (205)

H1 : h = h1 (206)

The mean of a random sample of size N of heat flux values is observed to equal qobs. Derive
an explicit algebraic expression for the probability that the sample mean exceeds qobs, if H0

holds. That is, derive an expression for the probability that you err if you reject H0. What is the
probability of error if qobs = 2.3, h0A∆T = 1, σ = 1.5 and N = 7?
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60. Risk-adjusted average. (p.233) Consider a random variable x in the interval [0, 1] whose
probability density function is p(x) = 2δx + 1− δ, where δ is a parameter in the interval [−1, 1].
Note that p(x) goes through the point (12 , 1) with slope determined by δ. The mean and variance
of x are:

E(x) =
1

2
+
δ

6
, σ2(x) =

1

12
− δ2

36
(207)

A large value of x is better than a small value, and the performance is assessed with the risk-
adjusted average as:

R(δ) = E(x)− ασ(x) (208)

where α is a non-negative parameter expressing the reduction in mean value resulting from risk
as expressed by the standard deviation. Note that E(x) increases, and σ(x) decreases, as δ
increases. Thus the performance measure R(δ) improves (increases) as δ increases.

We must choose between 2 systems, where system 2 is estimated to be better but more un-
certain than system 1. The estimated δ values are 0 < δ̃1 < δ̃2. δ̃i is known to be an upper
estimate of the true value, δi. However, the fractional error of the estimate, δ̃i−δi

δ̃i
, though posi-

tive, is thought to be not too large but its value is unknown. In any case, δi is no worse (no less)
than −δ̃i. We represent this information with the following info-gap model:

U(h, δ̃i) =
{
δi : −δ̃i ≤ δi, 0 ≤ δ̃i − δi

δ̃i
≤ h

}
, h ≥ 0 (209)

We require that the performance,R(δi), be no less than a critical valueRc. Derive an expression
for the robustness function. Which system do you prefer, as a function of Rc?
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61. National energy policy. (p.234) You must allocate a fixed budget for developing various tech-
nological alternatives which together will satisfy the future national energy requirement. The
technological alternatives are solar energy, wind energy, oil, coal, natural gas, nuclear, dis-
tribution infrastructure, etc. There are N alternatives that can be funded. The investment in
alternative i is $qi, for i = 1, . . . , N , which are non-negative values to be chosen. The antic-
ipated energy return per dollar invested in option i is ũi MW/$. The actual rate of return from
alternative i, ui, is uncertain. The total energy production, in MW, of allocation q is E = qTu.
We require that E be no less than Ec.

(a) Uncertainty in the energy return on investment is represented by the following fractional-
error info-gap model:

U(h) =
{
u :

∣∣∣∣
ui − ũi
ũi

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (210)

Note that we allow ui to be negative, implying that the technology may in fact consume
more energy than it produces. Derive an explicit algebraic expression for the robustness
of budget allocation q.

(b) Uncertainty in the energy return on investment is represented by the following fractional-
error info-gap model:

U(h) =
{
u : ui ≥ 0,

∣∣∣∣
ui − ũi
ũi

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (211)

Note that we do not allow ui to be negative, implying that development of a technology
would be terminated if it would consume more energy than it produces. Derive an explicit
algebraic expression for the robustness of budget allocation q.

(c) Uncertainty in the energy return on investment is represented by the following fractional-
error info-gap model:

U(h) =
{
u :

∣∣∣∣
ui − ũi
si

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (212)

where si is a known positive uncertainty weight for alternative i. Derive an explicit algebraic
expression for the robustness of budget allocation q.

(d) Mr A and Mr B advocate different technological alternatives. The anticipated vector of re-
turns for Mr A’s package is ũ(1), and for Mr B’s package is ũ(2). They both use the info-gap
model of eq.(212), and their vectors of uncertainty weights are s(1) and s(2) respectively.
The following relations hold for a given budget allocation q:

qT ũ(1) > qT ũ(2) (213)

qT s(1) > qT s(2) (214)

Derive an explicit algebraic expression for the values of the critical energy requirement,
Ec, for which you robust-prefer Mr A’s package.

(e) We now consider uncertain interactions between the energy returns, using the following
ellipsoid-bound info-gap model:

U(h) =
{
u : (u− ũ)T W (u− ũ) ≤ h2

}
, h ≥ 0 (215)

where W is a known, real, symmetric, positive definite matrix. Derive an explicit algebraic
expression for the robustness of budget allocation q.
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(f) For a specific budget allocation, q, we have an estimated probability density function for the
total energy production, p̃(E) = λ̃e−λ̃E for E ≥ 0. We are uncertain about the exponential
coefficient, as represented by the following info-gap model:

U(h) =
{
p(E) = λe−λE : λ ≥ 0,

∣∣∣∣∣
λ− λ̃

λ̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (216)

We require that the probability that the total energy production is less than Ec, be less that
ε. That is, we require:

Prob(E ≤ Ec) ≤ ε (217)

Derive an explicit algebraic expression for the robustness.
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62. Snake robots. (p.236) Consider a snake robot with N segments, as illustrated in fig. 10 for
N = 4. The angles θi are positive or negative according to the following rule. θi is positive if
the rotation from the thin to the thick line is counter clockwise; θi is negative otherwise. Let
θ = (θ1, . . . , θN ) denote the vector of angles. Throughout this problem treat angles θi as real
numbers between −∞ and +∞. Thus, for instance θi = 2π represents a joint that has wrapped
entirely around in a full circle, and thus is a larger angle than θi = 0.

θ1

θ2
θ3

θ4

Figure 10: Snake robot for problem 62.

(a) We require that the snake have a net orientation from left to right. Specifically, we require:

∣∣∣∣∣

N∑

i=1

θi

∣∣∣∣∣ ≤ ε (218)

where ε is a specified performance requirement. However, the angles are uncertain as
represented by the following info-gap model:

U(h) = {θ : |θi| ≤ h, i = 1, . . . , N} , h ≥ 0 (219)

Derive an explicit algebraic expression for the robustness function.
(b) We require that the snake not have a net orientation from left to right. Specifically, we

require: ∣∣∣∣∣

N∑

i=1

θi

∣∣∣∣∣ ≥ ε (220)

where ε is a specified performance requirement. However, the angles are uncertain as
represented by the info-gap model of eq.(219). Derive an explicit algebraic expression for
the robustness function.

(c) We require that the snake not have a net orientation from left to right. Specifically, we
require:

N∑

i=1

θi ≥ ε (221)

where ε is a specified performance requirement. However, the angles are uncertain as
represented by the info-gap model of eq.(219). Derive an explicit algebraic expression for
the robustness function.

(d) Let θ̃ denote a vector of nominal angles where we require that the net error in orientation
be less than ε: ∣∣∣∣∣

N∑

i=1

(θi − θ̃i)

∣∣∣∣∣ ≤ ε (222)

However, the angles θ are uncertain as represented by the following fractional-error info-
gap model:

U(h) =
{
θ :

∣∣∣∣∣
θi − θ̃i

θ̃i

∣∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (223)

where θ̃i 6= 0 for all i. Derive an explicit algebraic expression for the robustness function.
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(e) Let ϕ denote a vector of angles where we require that the net error in orientation with
respect to ϕ be less than ε: ∣∣∣∣∣

N∑

i=1

(θi − ϕi)

∣∣∣∣∣ ≤ ε (224)

However, the angles θ are uncertain as represented by the info-gap model of eq.(223).
Derive an explicit algebraic expression for the robustness function.

(f) Let ϕ denote a vector of angles where we require that the absolute deviation in orientation
with respect to ϕ be no less than ε:

∣∣∣∣∣

N∑

i=1

(θi − ϕi)

∣∣∣∣∣ ≥ ε (225)

However, the angles θ are uncertain as represented by the info-gap model of eq.(223).
Derive an explicit algebraic expression for the value of the angles θi that minimize the
sum in eq.(225) at horizon of uncertainty h. Derive an explicit algebraic expression for the
inverse of the robustness function.

(g) Continue from part 62e, and consider two different nominal configurations, θ̃
(a)

and θ̃
(b)

,
where:

∣∣∣∣∣

N∑

i=1

(θ̃
(b)
i − ϕi)

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑

i=1

(θ̃
(a)
i − ϕi)

∣∣∣∣∣ (226)

N∑

i=1

∣∣∣∣θ̃
(b)

i

∣∣∣∣ ≥
N∑

i=1

∣∣∣∣θ̃
(a)

i

∣∣∣∣ (227)

Derive an explicit algebraic expression for the range of ε values for which nominal config-

uration θ̃
(a)

is preferred over θ̃
(b)

based on robustness.
(h) For any given configuration, θ, the effort needed to straighten the snake is proportional to

the sum of the squares of the angles. We require that this effort not exceed E:

N∑

i=1

θ2i ≤ E (228)

However, the angles are uncertain according to the following ellipsoidal-bound info-gap
model:

U(h) =
{
θ : θTWθ ≤ h2

}
, h ≥ 0 (229)

where W is a known, real, symmetric, positive definite matrix. Derive an explicit algebraic
expression for the robustness function.

(i) Let x denote the sum of the angles, x =
∑N

i=1 θi. Assume that x is a random variable with
a uniform probability density on the interval [−b, b]:

p(x|b) = 1

2b
, x ∈ [−b, b] (230)

The probability density depends on the parameter b, which is uncertain:

U(h) =
{
b : b > 0, |b− b̃| ≤ h

}
, h ≥ 0 (231)

b̃ is known and positive. Let xc be a positive critical value, xc > 0. We require that the
probability that x is less than xc, must exceed ε:

Prob(x ≤ xc) ≥ ε (232)
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Because xc > 0 we only consider ε > 1/2. Derive an explicit algebraic expression for the
robustness function.

(j) Let x denote the sum of the angles, x =
∑N

i=1 θi. Assume that x is a random variable with
a uniform probability density on the interval [0, b]:

p(x|b) = 1

b
, x ∈ [0, b] (233)

The probability density depends on the parameter b, which is uncertain:

U(h) =
{
b : b > 0,

|b− b̃|
b̃

≤ h

}
, h ≥ 0 (234)

where b̃ is known and positive. Let xc be a positive critical value in the interval [0, b̃]. We
require that the probability that x is less than xc, must not exceed ε:

Prob(x ≤ xc) ≤ ε (235)

Derive an explicit algebraic expression for the robustness function.
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F

φ1

F

φ2

Figure 11: Platform for problem 63.

63. Stability of a platform. (p.240) A thin rigid beam-like platform is supported from below at its
midpoint by a flexible column that is at elastic equilibrium when the platform is horizontal, as
shown in fig. 11. The flexural stiffness of the elastic column is k [Nm/radian] and it applies a
restoring moment of force M = kθ at the midpoint of the platform when the platform is tilted by
θ radians. The width of the platform is 2L [m]. Ignore the thickness of the beam. The platform
is loaded, in the plane, at its two ends by a static force F , at different angles from the vertical,
φ1 and φ2.

(a) The force, F , is known. The angles are nominally zero but deviate from zero by an un-
known amount. That is, φ1 and φ2 belong to the following info-gap model of uncertainty:

U(h) = {φ1, φ2 : |φi| ≤ h, i = 1, 2} , 0 ≤ h ≤ π (236)

The platform is satisfactorily level if the absolute angle of tilt at static equilibrium is never
greater than the critical value θc:

|θ| ≤ θc (237)

Derive the robustness function of the platform. The decision vector is q = (k, L)T . Explain
how the robustness changes as these design variables are changed.

(b) Now consider a continuously distributed load in the plane, along the beam from x = −L
at the left to x = +L at the right. The magnitude of the load density at each point is f
[N/m], which is known and constant. The angle of the load with respect to the vertical, at
position x, is φ(x). The angle of the load at each point is nominally zero but may deviate
from zero by an unknown amount. That is, φ(x) belongs to the following info-gap model of
uncertainty:

U(h) = {φ(x) : |φ(x)| ≤ h, −L ≤ x ≤ L} , 0 ≤ h ≤ π (238)

Derive the robustness function for satisfying the performance requirement in eq.(237).
Explain how the robustness changes as the design variables, k and L, are changed.
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64. Reliability of a milling process–2 . (p.242) An automated cutting tool moves at constant hor-
izontal velocity across a work piece. The height y(t) of the tool varies in transit. The desired
height profile is ỹ(t). The actual height profile differs from ỹ(t) in an uncertain manner:

y(t) = ỹ(t) +
n2∑

n=n1

bn cos
nπt

T
= ỹ(t) + bTγ(t), 0 ≤ t ≤ T (239)

where b is the vector of uncertain Fourier coefficients and γ(t) is the vector of corresponding
cosine functions. Uncertainty in the actual height profile is represented by the following info-gap
model:

U(h) =
{
y(t) = ỹ(t) + bTγ(t) : bTWb ≤ h2

}
, h ≥ 0 (240)

where W is a known, real, symmetric, positive definite matrix.

The milling process fails if the cutting tool is too far above the planned height at the end of the
run, t = T . That is, failure is defined as:

y(T )− ỹ(T ) > Dc (241)

(a) Derive a generic algebraic expression for the robustness.
(b) Consider the specific case that W is the identity matrix. How does the robustness vary

with the size and location of the frequency window, n1, . . . , n2?
(c) Now suppose that W is a diagonal matrix whose diagonal elements are 1

n1
, . . . , 1

n2
. What

does this imply about the relative uncertainty of the different modes? Use the result from
part 64a to numerically evaluate the robustness vs. n2 for a range of n2 values, with n1 = 1.
What does this indicate about the impact, on the robustness, of the bandwidth of uncertain
modes? Let Dc = 1.
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65. Uncertain loads on a linear elastic system . (p.244) Consider the deflection of a point in a
linear elastic system subject to uncertain loads. The magnitude of deflection, y, is related to the
vector of N loads on the system, f , according to:

y = kT f (242)

where k is a known vector of flexibility coefficients. The system fails if the deflection exceeds a
critical value, yc. Consider the following different situations.

(a) Each of the N elements of the load vector may be either positive or negative. It is known
that the length of the load vector is bounded but the value of the bound is unknown. Rep-
resent the uncertain load vector with the following info-gap model:

U(h) =
{
f : fT f ≤ h2

}
, h ≥ 0 (243)

Derive an explicit expression for the robustness function.
(b) Each of the N elements of the load vector may be either positive or negative. It is known

that the length of the load vector is bounded but the value of the bound is unknown. Fur-
thermore, the greatest magnitude of the ith element of the load vector may exceed the
greatest magnitude the (i − 1)th element by as much as a factor 2. Represent the uncer-
tain load vector with the following info-gap model:

U(h) =
{
f : fTWf ≤ h2

}
, h ≥ 0 (244)

where W is a diagonal N × N matrix whose non-zero terms are Wnn = 4−(n−1), n =

1, . . . , N . Explain why this info-gap model reflects the available information. Derive an
explicit expression for the robustness function.

(c) Now consider a generic ellipsoidal uncertainty where the load vector belongs to the info-
gap model:

U(h) =
{
f : (f − f̃)TW (f − f̃) ≤ h2

}
, h ≥ 0 (245)

where the nominal load, f̃ , and the shape matrix, W , are known and W is real, symmetric,
and positive definite. Derive an explicit expression for the robustness function.

(d) Consider the choice between two designs with flexibility vectors k1 and k2 for which:

kT1 f̃ > kT2 f̃ (246)

kT1W
−1k1 < kT2 W

−1k2 (247)

Using the robustness function from part 65c, for what values of yc do you prefer design k1,
and when do you prefer k2?
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66. Braking system–3. (p.247). Consider a linear braking system for which the stopping distance
is described by:

s(g, f) =

∫ t

0
f(τ)g(t− τ) dτ (248)

where f(t) is the uncertain forcing function and g(t) is the known impulse response function.
We require that the braking distance not exceed the critical value sc at a specified time T .

(a) Derive an explicit algebraic expression for the robustness for each of the following four
info-gap models of uncertainty in the force.

U1(h) =

{
f(t) :

1

T

∫ T

0
f(t)2 dt ≤ h2

}
, h ≥ 0 (249)

U2(h) = {f(t) : |f(t)| ≤ h,∀ t ≥ 0} , h ≥ 0 (250)

U3(h) =

{
f(t) :

1

T

∫ T

0
(f(t)− f̃(t))2 dt ≤ h2

}
, h ≥ 0 (251)

U4(h) =
{
f(t) : |f(t)− f̃(t)| ≤ h,∀ t ≥ 0

}
, h ≥ 0 (252)

The nominal forcing function, f̃(t), is known and positive. Note that the horizon of uncer-
tainty, h, has the same units for all 4 info-gap models, so the corresponding robustnesses
are commensurable.

(b) Employ the Cauchy-Schwarz inequality to show that the following relation holds:

∫ T

0
|g(t)|dt ≤

√

T

∫ T

0
g2(t) dt (253)

Hint: |g| = 1× |g|.
(c) The info-gap models of eqs.(249) and (250) represent two different states of knowledge (or

ignorance). Based on the robustness functions, which state of knowledge do you prefer?
(d) The info-gap models of eqs.(249) and (252) represent two different states of knowledge (or

ignorance). Based on the robustness functions, which state of knowledge do you prefer?
(e) The info-gap models of eqs.(250) and (251) represent two different states of knowledge (or

ignorance). Based on the robustness functions, which state of knowledge do you prefer?
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67. Ballistics–2. (p.250) A missile is designed to follow the trajectory:

y(x) = ax(b− x) (254)

where x is the horizontal position along the ground from the launch site to the landing site, and
y(x) is the height of the missile along the trajectory. a is positive. We require that the missile
land at a distance no less than xc from the launch site.

(a) The coefficient b is uncertain, which introduces uncertainty in the trajectory:

U(h) =
{
b :

∣∣∣∣∣
b− b̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (255)

b̃ and s are known and positive. Derive an explicit algebraic expression for the robustness.
(b) Use the robustness function from part 67a to choose between two designs. System 1 has

better flight control while system 2 has longer range. Specifically:

s1 < s2 (256)

b̃1 < b̃2 (257)

where si and b̃i are the parameters of the info-gap model, eq.(255), for system i.
(c) Now consider a different info-gap model for the uncertain flight path:

U(h) =
{
y(x) : y(x) ≥ 0,

∣∣∣∣
y(x)− ỹ(x)

y0

∣∣∣∣ ≤ h

}
, h ≥ 0 (258)

where ỹ(x) is known and specified in eq.(254), and y0 is positive and known. Derive an
explicit algebraic expression for the robustness. Evaluate and plot the robustness curves
for a = 1 and the following two sets of values: (y0, b) = (0.4, 1) and (0.2, 0.8). What is the
intuitive meaning of these values for b and y0? For what values of xc do you robust-prefer
each option?



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 71

68. Safety factor in a rotating beam, (p.252). Consider a rigid beam supported at one end with
a rotational spring of stiffness k. The moment of inertia of the beam, for rotation around its
support, is J . The natural frequency of rotation is ω. The rotation is frictionless, and a moment
u(t) is applied to the free end of the beam. The angle of rotation from zero initial conditions, as
a function of time, is:

θu(t) =
1

Jω

∫ t

0
u(τ) sinω(t− τ) dτ (259)

We require that the absolute angle of rotation, at a specified time T , not exceed the critical
value θc:

|θu(T )| ≤ θc (260)

The estimated applied moment is:

ũ(t) = u0 sinω(T − t) (261)

where u0 is a known positive constant. The uncertainty in the applied moment is represented
by the following info-gap model:

U(h) =
{
u(t) :

∣∣∣∣
u(t)− ũ(t)

u0

∣∣∣∣ ≤ h

}
, h ≥ 0 (262)

(a) Derive an explicit algebraic expression for the robustness function. Let T = nπ/ω for a
known positive integer n.

(b) For a specified value of θc, let J0 be the moment of inertia for which the estimated absolute
angle of deflection at time T exactly equals θc. What is the robustness to load uncertainty
at this value of θc? Hint: It is not necessary to calculate θũ(T ) directly.

(c) We want to increase the moment of inertia from J0 to (1 + ε)J0 in order to enhance the
safety of the system. The horizon of uncertainty, h, in the info-gap model of eq.(262) is
unknown. However, we are fairly confident that load amplitude will not exceed the nominal
value, u0, by more than a known factor f . Use the robustness function from part 68a to
derive an explicit algebraic expression for the safety factor ε.

(d) Now suppose that we know that |θ(T )| is a random variable with an exponential distribution:

p(|θ(T )|) = µe−µ|θ(T )|, |θ(T )| ≥ 0 (263)

We know that µ cannot be negative, and a known estimate of µ is µ̃, but we don’t know the
fractional error of µ̃. Hence we adopt the following info-gap model:

U(h) =
{
µ : µ > 0,

∣∣∣∣
µ− µ̃

µ̃

∣∣∣∣ ≤ h

}
, h ≥ 0 (264)

We require small probability of violating the requirement in eq.(260). Specifically, we re-
quire:

Prob (|θu(T )| > θc) ≤ Pc (265)

Derive an explicit expression for the robustness function.
(e) Return to part 68a and suppose that we know that h is a random variable with an expo-

nential distribution:
p(h) = λe−λh, h ≥ 0 (266)

with known exponential coefficient λ. Using the robustness of part 68a, derive an explicit
algebraic expression for a meaningful lower bound of the probability of satisfying eq.(260).
Hint: Consider the relation between “h ≤ ĥ” and “|θu(T )| ≤ θc”.
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Figure 12: Beam for problem 69.
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69. Balancing a beam, (p.254). Consider a rigid beam supported at the midpoint on a frictionless
joint, as shown in fig. 12. A positive force F acts downward at the right end. A distributed force
f(x) acts along the beam, where positive force acts downward. The length of the beam is 2L.
The net moment of force on the beam is:

M(f) = FL+

∫ L

−L
xf(x) dx (267)

We require that the absolute moment not exceed the critical value Mc:

|M(f)| ≤Mc (268)

(a) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣
f(x)− f0

f0

∣∣∣∣ ≤ h

}
, h ≥ 0 (269)

where f0 is a known positive constant.
(b) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣
f(x)− f0

s

∣∣∣∣ ≤ h

}
, h ≥ 0 (270)

where f0 and s are known positive constants.
(c) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣∣
f(x)− f0 cos

πx
L

f0

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (271)

where f0 is a known positive constant.
(d) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) =

N∑

n=1

an sin
nπx

L
= aTσ(x) : aTWa ≤ h2

}
, h ≥ 0 (272)

where W is a known positive definite real symmetric matrix.
(e) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) :

∫ L

−L
(f(x)− f0)

2 dx ≤ h2
}
, h ≥ 0 (273)

where f0 is a known positive constant.
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70. Random events and failure, (p.256). Consider a system in which adverse events occur ran-
domly, independently, and at constant average rate λ/sec. Failure of the system is defined to
occur if n or more events occur within a specified duration T , for a specified value of n.

(a) If failure occurs after the 1st event, that is, n = 1, what is the probability of failure of the
system in time T?

(b) If failure occurs after the 2nd event, that is, n = 2, what is the probability of failure of the
system in time T?

(c) Suppose that failure occurs after the first event, that is, n = 1, but λ is uncertain according
to the info-gap model:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣
λ− λ̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (274)

We require that the probability of failure be no greater than Pc. Derive an explicit algebraic
expression for the robustness.

(d) Continuing part 70c, consider a budget allocation problem. The cost of the system de-
pends independently on both λ̃ and s. A small average event rate, λ̃, is better than a
large average event rate. Similarly, a small uncertainty weight, s, is better than a large
uncertainty weight. λ̃ can be reduced by investing resources. Specifically, λ̃ decreases
linearly with expenditure: dλ̃/d$ = −a where a is a known positive constant. Likewise,
s decreases linearly with expenditure: ds/d$ = −b where b is a known positive constant.
You have a tiny budget, c, say $1. Should you allocate it to decreasing λ̃, or to decreasing
s, or should you divide it between the two items and if so, how?

(e) Now suppose that failure occurs after the second event, that is, n = 2, but λ is uncertain
according to the info-gap model in eq.(274). Derive an explicit algebraic expression for the
inverse of the robustness function.
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Figure 13: Cantilever for problem 71.

71. Random loads on a beam, (p.258). Consider the cantilever in fig. 13 with load F at the free
end and rotational stiffness k at the base. The angle of deflection of the beam around its base
is:

θ =
FL sinφ

k
(275)

where 0 ≤ φ ≤ π. We require that the absolute deflection not exceed the known critical value
θc:

|θ| ≤ θc (276)

(a) The load, F , is uncertain according to the info-gap model:

U(h) = {F : |F | ≤ h} , h ≥ 0 (277)

Derive an explicit algebraic expression for the robustness.
(b) The load, F , and the stiffness, k, are uncertain according to the info-gap model:

U(h) =
{
F, k :

∣∣∣∣∣
F − F̃

F̃

∣∣∣∣∣ ≤ h, k > 0,

∣∣∣∣∣
k − k̃

k̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (278)

Derive an explicit algebraic expression for the robustness.
(c) Now consider k to be known and the load, F , to be a random variable with an exponential

distribution:
p(F ) = λe−λF , F ≥ 0 (279)

The system fails if eq.(276) is not satisfied. Let Pf denote the probability that the system
fails. Derive an explicit algebraic expression for the probability of failure.

(d) Continuing part 71c, suppose that the exponential coefficient λ is uncertain as described
by the following info-gap model:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣
λ− λ̃

λ̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (280)

We require that the probability of failure not exceed the critical value Pc. Derive an explicit
algebraic expression for the robustness.

(e) One person claims that the true angle of deflection of the beam is 0.26, but another person
claims the angle is greater:

H0 : θ = 0.26 (281)

H1 : θ > 0.26 (282)

We have performed 5 statistically independent and normally distributed measurements of
the angle θ: 0.26, 0.31, 0.29, 0.22, 0.32. Given this random sample, do you accept or
reject H0 at the 0.01 level of significance?
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(f) The beam is subject to successive independent loadings. Each loading is either “normal”
or “excessive”. One person claims that, given a large set of loadings, 10% of the loadings
are “excessive” and the rest are “normal”. Another person claims that this is false:

H0 : p1 = 0.1, p2 = 0.9 (283)

H1 : ¬H0 (284)

The loading has been observed 35 times, and exactly 5 cases were “excessive”. Do you
accept or reject H0 at level of significance 0.05?

(g) A large batch of many millions of beams has been produced, where the probability that
any one beam is defective is 0.005. In a sample of 1000 beams, what is the probability
that more than 1 beam is defective?

(h) Beams are produced in sequence, where the average number of defective beams is 5 per
1000 beams. Defects in any one beam are independent of defects in other beams. What
is the probability of more than 1 defective beam in the first 1000 beams?
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Figure 14: Gap-closing electrostatic ac-
tuator for problem 72. (Fig. thanks to
Prof. David Elata, head, Mechanical Engi-
neering Micro Systems (MEMS) lab, Tech-
nion.)

Figure 15: Mechanically linearized Gap-
closing electrostatic actuator for prob-
lem 72. (Fig. thanks to Prof. David Elata)

72. Gap-closing electrostatic actuators, (p.260). The non-linear force-displacement relation for
the gap-closing electrostatic actuator in fig. 14 is:

F = kx− εAV 2

2(g − x)2
(285)

where ε is the dielectric constant, A is the area of the plates, V is the electric potential on the
device, k is the spring stiffness and g is the initial gap size.

Fig. 15 shows a mechanically linearized modification of the device in fig. 14 for which the force-
displacement relation is, nominally, linear:

F = Kx (286)

The degree of linearity depends on the shapes of the cams and on the degree of mechanical
and structural uniformity of the pair of beams. We will explore the robustness to various forms of
uncertainty in the linearity of the beam. We will also explore probabilistic models and statistical
decisions.
(a) We require that application of a known force F results in a displacement no less than xc.

Uncertainty in the linear stiffness coefficient K is represented by the info-gap model:

U(h) =
{
K : K > 0,

∣∣∣∣∣
K − K̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (287)

where K̃ is the known nominal linear stiffness and s is a known positive error coefficient.
Derive an explicit algebraic expression for the robustness.

(b) Repeat part 72a where we aspire to displacement as large as xw. Derive an explicit
algebraic expression for the opportuneness.

(c) We require that application of a known force F results in a displacement no less than xc.
However, the nominal linear force-displacement relation in eq.(286) is replaced by:

x =
F

K
+

N∑

n=1

anF
n =

F

K
+ aTφ (288)

where φ is the vector of powers of F and a is the vector of coefficients whose uncertainty
is represented by the info-gap model:

U(h) =
{
a : aTWa ≤ h2

}
, h ≥ 0 (289)

where W is a known, real, symmetric, positive definite matrix. Derive an explicit algebraic
expression for the robustness.
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(d) Now consider K in eq.(286) to be a random variable with a uniform probability density:

p(K) =
1

Kmax
, 0 ≤ K ≤ Kmax (290)

Failure occurs if
x < xc (291)

Derive an explicit algebraic expression for the probability of failure. Assume F ≤ xcKmax.
(e) Continuing part 72d, suppose that F and Kmax are both info-gap-uncertain as described

by the following info-gap model:

U(h) =
{
F,Kmax : F > 0,

∣∣∣∣∣
F − F̃

F̃

∣∣∣∣∣ ≤ h, Kmax > 0,

∣∣∣∣∣
Kmax − K̃max

K̃max

∣∣∣∣∣ ≤ h,

}
, h ≥ 0

(292)
We require that the probability of failure not exceed the critical value Pc. Derive an explicit
algebraic expression for the robustness. Assume F̃ ≤ xcK̃max.

(f) Let K be a random variable whose estimated pdf, p̃(K), is normal with mean µ and vari-
ance σ2. We are confident that this estimate is accurate for K within an interval around µ
of known size ±δs. However, outside of this interval of K values the fractional error of the
pdf is unknown. Our info-gap model is:

U(h) =
{
p(K) :

∫ ∞

−∞
p(K) dK = 1, p(K) ≥ 0, ∀K,

p(K) = p̃(K), |K − µ| ≤ δs

∣∣∣∣
p(K)− p̃(K)

p̃(K)

∣∣∣∣ ≤ h, |K − µ| > δs

}
, h ≥ 0 (293)

The system fails if x < xc where x = F/K as stated in eq.(286), where F is a known
positive constant. x is now a random variable so the performance requirement is that the
probability of failure not exceed a critical value Pc. Derive an explicit algebraic expression
for the robustness function. Assume that F/xc ≥ µ+ δs.

(g) We are testing a MEMS system but we don’t know if it is “raw” like fig. 14 or “linearized” like
fig. 15. The loads are random and, if the beam is linearized, they produce small, medium
and large deflections with frequencies 0.5, 0.3 and 0.2, respectively. If the beam is not
linearized then the frequencies are different. We observe 41 small, 32 medium, and 27
large displacements. For the following hypotheses, do you accept or reject H0 at the 0.05
level of significance?

H0 : psml = 0.5, pmed = 0.3, plrg = 0.2 (294)

H1 : ¬H0 (295)

(h) The lifetime of the device is distributed according to a Weibull distribution whose probability
distribution function is:

P (t) = 1− e−(λt)α , t ≥ 0 (296)

where λ and α are positive constants. A specific unit has been observed to be operational
at time t0. Derive an explicit algebraic expression for the probability that this unit will be
operational at time t1.
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(i) We have an endless supply of devices where a fraction p are “raw” like fig. 14 and the rest
are “linearized” like fig. 15. We select N devices randomly and independently. Derive an
explicit algebraic expression for the probability that J or more devices are “raw”.

(j) Apply a known force, F , measure the resulting displacement x, and let y denote the dif-
ference between the measurement and the predicted displacement based on eq.(286).
Assume the measurement is corrupted by zero-mean normally distributed noise whose
variance is unknown. The values of y in a random sample of size N = 6 are 1, 3, 3, 4, 1, 2.
The advocate of the linear model in eq.(286) claims that the true value of y is zero, while
the critic claims that this is false:

H0 : y = 0 (297)

H1 : y 6= 0 (298)

Do you accept or reject H0 at the 0.01 level of significance?
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73. Supply network, (p.266).

Figure 16: Topology for two sources and two consumers, problem 73.

(a) Consider a network that supplies a good (e.g. water, electricity or cookies) to consumers.
The network has two suppliers and two consumers. Source i produces quantity si and
supplies a fraction fi to consumer i, and a fraction 1−fi to consumer j, as in fig. 16. Source
j acts similarly. Each consumer consumes whatever is supplied. Thus the consumption
by consumer i is:

ci = fisi + (1− fj)sj (299)

where i = 1, 2 and j = 3− i.

There is fractional-error uncertainty in the source properties:

U(h) =
{
fi, si :

∣∣∣∣∣
fi − f̃ i

f̃ i

∣∣∣∣∣ ≤ h, fi ∈ [0, 1],

∣∣∣∣
si − s̃i
s̃i

∣∣∣∣ ≤ h, si ≥ 0, i = 1, 2

}
, h ≥ 0 (300)

We require that each consumer be within δ of a specified value, c:

|ci − c| ≤ δ (301)

Derive an explicit expression for the inverse of the robustness function for consumer i.
Evaluate and compare the robustnesses for c = 1, f̃ = 1/2 and s̃ = 0.9 or 1.0. Which
option is preferred? Why, and what does this mean?

(b) Modify part 73a as follows. The nominal consumption by each consumer is c̃ but the actual
consumption is:

c = c̃+ ε (302)

where ε is an exponentially distributed random variable whose pdf is p(ε) = λe−λε, ε ≥ 0.
Derive an explicit algebraic expression for the probability that c ≤ c where c is a known
positive value greater than c̃.

(c) Continuing part 73b, consider uncertainty in the exponential coefficient, λ, represented by
the info-gap model:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣
λ− λ̃

w

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (303)

where λ̃ and w are known positive values. We require that the probability that c ≤ c be
less than δ where 0 < δ < 1. Derive an explicit algebraic expression for the robustness.

(d) Continuing part 73c, consider two different designs with values λ̃i and wi, for i = 1 and 2.
Based on the robustness function, derive an explicit algebraic expression for the values of
δ for which you prefer system 1.

(e) A particular consumer (you, perhaps) is supplied by N sources resulting in consumption
equal to:

c =
N∑

i=1

fisi (304)
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The fractions fi and source terms si are uncertain:

U(h) =
{
f, s : fi ≥ 0,

∣∣∣∣∣
fi − f̃ i

f̃ i

∣∣∣∣∣ ≤ h, si ≥ 0,

∣∣∣∣
si − s̃i
s̃i

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (305)

We require that the consumption be no less than the critical value c:

c ≥ c (306)

Derive an explicit algebraic expression for the robustness function.
(f) Repeat part 73e with the modification that the fractions, fi, are positive and known for sure

and the source terms are uncertain according to:

U(h) =
{
s : (s− s̃)TW−1(s− s̃) ≤ h2

}
, h ≥ 0 (307)

where s̃ is a known vector and W is a known, positive definite, real, symmetric matrix.
The performance requirement is eq.(306). Derive an explicit algebraic expression for the
robustness function.

(g) Consider the following modification of the 2-source and 2-consumer network, in which we
introduce a mutual commitment. Under ordinary conditions, each source supplies a single
consumer at each discrete time step:

c1(t) = s1, c2(t) = s2, t = 0, 1, 2, . . . (308)

Each consumer has its own private supply, and each consumer requires a positive con-
sumption ci, i = 1, 2.

However, the consumers have mutual commitments. If consumer i loses its supply at
some time step, then in the next time step consumer j is committed to supply consumer i
with a fraction γ of i’s requirement, ci, though j cannot supply more than sj provides.

Suppose that at some time step, call it t = 0, consumer 1 loses its supply, so the consump-
tion in this step is:

c1(0) = 0, c2(0) = s2 (309)

In the next time step, consumer 2 must transfer to consumer 1 a part of 2’s supply so the
consumption is:

c1(1) = min(s2, γc1), c2(1) = (s2 − γc1)
+ (310)

where x+ = x if x ≥ 0 and equals zero otherwise.

The sources are uncertain according to a fractional-error info-gap model:

U(h) =
{
s : si ≥ 0,

∣∣∣∣
si − s̃i
wi

∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (311)

where s̃i and wi are known positive constants.

Derive an explicit algebraic expression for the robustness of consumer 2 at step 1.
(h) Using the robustness function from part 73g, consider the following two commitment situ-

ations, (γ,w2) and (γ′, w′
2), where:

γ′ < γ, w′
2 > w2 (312)

The ‘prime’ configuration entails lower commitment by consumer 2, but greater uncertainty
in consumer 2’s source. Use the robustness function to discuss the values of consumer
2’s required consumption, c2, for which 2 prefers the ‘prime’ configuration.
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74. Serial and parallel networks, (p.269). We will consider the networks shown in fig. 17. Let
Pi denote the probability that sub-unit i is functional, and assume that sub-unit failures are
statistically independent.

Figure 17: Three networks for problem 74. Fig. 1: serial. Fig. 2: parallel. Fig.
3: hybrid.

(a) Consider the 2-element serial network in part 1 of fig. 17. Derive an explicit expression for
the probabilistic reliability of the network: the probability that the network is functional.

(b) Consider the 2-element parallel network in part 2 of fig. 17. Derive an explicit expression
for the probabilistic reliability of the network.

(c) Consider the 4-element hybrid network in part 3 of fig. 17. Derive an explicit expression
for the probabilistic reliability of the network.

(d) Continue part 74c but assume that the true probabilities, Pi, are uncertain. Let P̃ i be an
estimate of Pi with error si, where the fractional deviation of Pi from P̃ i, in units of si, is
unknown. Derive an explicit expression for the inverse of the robustness function if we
require that the reliability be no less than Rc.
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75. Uncertain truss, (p.271). Consider a truss subject to loads F1 and F2 resulting in tension T in
one of the bars:

T = F1 sin θ − F2 (313)

where θ is known and 0 < θ < π/2.

(a) We require that the tension not exceed a know critical value, Tc:

T ≤ Tc (314)

The loading forces are uncertain as specified by a fractional-error info-gap model:

U(h) =
{
F :

∣∣∣∣∣
Fi − F̃ i

si

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (315)

where F̃ i and si are known and positive. Derive an explicit algebraic expression for the
robustness.

(b) Continuing part 75a, consider two alternative configurations, where the angles of the alter-
natives satisfy:

0 < θ(1) < θ(2) <
π

2
(316)

All other parameters are the same for both alternatives. For what values of Tc is the first
design robust-preferred?

(c) Return to the initial definition of the problem, prior to part 75a, and let F1 be a random
variable with a uniform probability density function on the interval [−b, b]. The tension is
specified by eq.(313). Derive an explicit algebraic expression for the probability of violating
eq.(314).

(d) Continuing part 75c, suppose that the value of b is uncertain, as specified by the info-gap
model:

U(h) =
{
b : b > 0,

∣∣∣∣∣
b− b̃

b̃

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (317)

In part 75c we evaluated the probability of violating eq.(314). We require that this prob-
ability not exceed the critical value Pc. Derive an explicit algebraic expression for the
robustness. Assume that 0 ≤ (Tc + F2)/ sin θ ≤ b̃.

(e) Now let’s generalize the problem and consider a vector, F , of N forces resulting in tension
T in a particular bar given by:

T = gTF (318)

where g is a known vector. The uncertainty in the loading vector is specified by the follow-
ing ellipsoid-bound info-gap model:

U(h) =
{
F : (F − F̃ )TW (F − F̃ ) ≤ h2

}
, h ≥ 0 (319)

where F̃ andW are known andW is a real, symmetric, positive definite matrix. We require
that eq.(314) hold. Derive an explicit algebraic expression for the value of F that maximizes
the tension, T , at horizon of uncertainty h.
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76. Uncertain loading (based on exam, 2014), (p.273). Consider a cantilever beam of length L.
A distributed force of constant positive magnitude, F0 [N/m], but variable angle of application,
θ(x), is applied along the beam in the vertical plane. The bending moment at the base of the
beam is:

M(θ) =

∫ L

0
xF0 sin θ(x) dx (320)

We require that the bending moment not exceed a critical value, Mc:

M ≤Mc (321)

(a) The angle of application, θ(x), is uncertain as expressed by the following info-gap model:

U(h) =
{
θ(x) :

∣∣∣∣
θ(x)− θ0

θ0

∣∣∣∣ ≤ h

}
, h ≥ 0 (322)

where θ0 is known, positive and less than π/2. Derive an explicit algebraic expression for
the inverse of the robustness function of the beam.

(b) Now suppose that the system is altered so that the system model, instead of eq.(320), is:

M(F ) =

∫ L

0
xF (x) dx (323)

The loading, F (x), is uncertain as expressed by the info-gap model:

U(h) =
{
F (x) :

∣∣∣∣∣
F (x)− F̃ (x)

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (324)

where s is known and positive and F̃ (x) = ax and a is known and positive. The perfor-
mance requirement is eq.(321). Derive an explicit algebraic expression for the robustness
function.

(c) Continuing part 76b, consider two alternative designs specified by (a1, s1) and (a2, s2)

where:
0 < a1 < a2 and 0 < s2 < s1 (325)

Explain the dilemma facing the designer who must choose between these two designs.
Which design is preferred, based on the robustness criterion, when the performance re-
quirement is in the interval:

a1L
3

3
≤Mc ≤

a2L
3

3
(326)

(d) Return to the system model of eq.(320) and suppose that θ(x) = θ0 which is known,
constant, positive and no greater than π/2. Also suppose that F0 is a random variable with
the following probability density function:

p(F0) =
2F0

F 2
max

, 0 ≤ F0 ≤ Fmax (327)

and zero otherwise. Derive an explicit algebraic expression for the probability of violating
the condition in eq.(321).

(e) The probability of violating the condition in eq.(321) depends on the value of Mc. Suppose,
unlike problem 76d, that the probability of violating the condition in eq.(321) is:

Pf = e−λMc (328)
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where Mc can only take non-negative values. We can specify a critical value, M̃ c. How-
ever, the actual critical value that we should use, Mc, is uncertain, as expressed by this
info-gap model:

U(h) =
{
Mc : Mc ≥ 0,

∣∣∣∣∣
Mc − M̃ c

M̃ c

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (329)

We require that Pf not exceed the value, Pfc:

Pf ≤ Pfc (330)

Derive an explicit algebraic expression for the robustness function.
(f) Return to the system model of eq.(320) and suppose that θ(x) = θ0 which is known,

constant, positive and no greater than π/2. Also suppose that F0 is a random variable
with a normal distribution with mean µ and unknown variance. The value of F0 has been
measured in a random sample of size N . The mean and variance of this sample are xobs
and s2obs. There is dispute about the value of µ. One person claims that it equals the known
value µ0, while another person claims that it is greater. The corresponding hypotheses are:

H0 : µ = µ0 (331)

H1 : µ > µ0 (332)

Suppose that:
xobs − µ0
sobs

= 1 (333)

What is the smallest sample size, N , at which you would reject H0 at level of confidence
equal to 0.005?
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77. Uncertain elastic system (based on exam, 2014), (p.275). Displacement x is related to force
f as:

x = cf (334)

where c is a positive constant.

(a) We require that the displacement, x, be no less than the critical value xc:

x ≥ xc (335)

However, the force, f , is uncertain according to the info-gap model:

U(h) =
{
f : f ≥ 0,

∣∣∣∣∣
f − f̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (336)

where f̃ and s are known positive constants. Derive an explicit algebraic expression for
the robustness function.

(b) Now suppose, unlike part 77a, that f is a random variable with an exponential distribution
whose probability density function is p(f) = λe−λf for f ≥ 0. Derive an explicit algebraic
expression for the probability of violating the condition in eq.(335).

(c) Continuing part 77b, suppose that c is uncertain as described by this info-gap model:

U(h) =
{
c : c ≥ 0,

∣∣∣∣
c− c̃

w

∣∣∣∣ ≤ h

}
, h ≥ 0 (337)

where c̃ and w are known positive constants. We require that the probability of violating
the condition in eq.(335) be no greater than the value Pc. Suppose that xc ≥ 0. Derive an
explicit algebraic expression for the robustness function.

(d) We now modify eq.(334) to introduce a non-linearity:

x = cf2 (338)

Both the coefficient c and the force f are uncertain:

U(h) =
{
f, u : f ≥ 0,

∣∣∣∣∣
f − f̃

s

∣∣∣∣∣ ≤ h, −h ≤ c ≤ 0

}
, h ≥ 0 (339)

where f̃ and s are known positive constants. Derive an explicit algebraic expression for
the smallest (most negative) value of x at horizon of uncertainty h.

(e) We now generalize part 77a as follows. The displacement, x, is a function of a vector of
forces, fi, with a vector of real (positive or negative) coefficients, ci:

x =
N∑

i=1

cifi (340)

The force vector is uncertain according to the info-gap model:

U(h) =
{
f :

∣∣∣∣∣
fi − f̃ i
si

∣∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (341)

where f̃ i and si are known positive constants. We require that eq.(335) hold. Derive an
explicit algebraic expression for the robustness.
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(f) Eq.(334) describes the force-displacement relationship. Measurements of the displace-
ment are corrupted by noise which is statistically independent but identically distributed
from one measurement to the next. The displacement was measured many times. How-
ever, each displacement was recorded only as “small”, “medium” or “large”. Actual values
of displacement were not recorded. The number of “small”, “medium” or “large” measure-
ments are n1, n2 and n3 respectively. The total number of measurements is N . Under
ordinary conditions, the probability is pi to obtain a “small”, “medium” or “large” displace-
ment, for i = 1, 2, 3. These probabilities change if failure occurs. Define the statistic:

χ2 =
3∑

i=1

(ni −Npi)
2

Npi
(342)

i. Under “ordinary” conditions and with many measurements, what is the probability that
χ2 will exceed the value 7.38?

ii. The null hypothesis,H0, is that the system is “ordinary”, that is, no failure has occurred.
The alternative hypothesis, H1, is that failure has occurred. Many observations have
been made and the χ2 statistic has been evaluated. Do you reject H0 at level of
significance 0.05 if χ2 = 9.21?

iii. Continuing part 77(f)ii, what is the smallest level of significance at which you would
reject H0?
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78. Uncertain dynamical system (036057, based on exam, 30.12.2014), (p.277). Consider a
dynamical system whose output, y(t), is:

y(t) =

∫ t

0
u(s)f(t− s) ds (343)

where the input function, u(s), is uncertain and the system properties are expressed by the
function f(s) = e−λs and λ is positive and known.

(a) Uncertainty in the input function is expressed by a fractional-error info-gap model:

U(h) =
{
u(s) :

∣∣∣∣
u(s)− ũ(s)

ũ(s)

∣∣∣∣ ≤ h

}
, h ≥ 0 (344)

where the nominal input is ũ(s) = e−µs, and µ is a known positive constant different from
µ. We require that y(t) ≥ yc at a specified time t. Derive an explicit expression for the
robustness function.

(b) Revise problem 78a by changing the info-gap model as follows. The input is a truncated
Fourier series: u(s) =

∑N
j=1 cj cos

jπs
t = cT γ(s) and the vector of Fourier coefficients, c, is

uncertain:
U(h) =

{
u(s) = cTγ(s) : (c− c̃)TW (c− c̃) ≤ h2

}
, h ≥ 0 (345)

where W is a known, real, symmetric, positive definite matrix and c̃ is a known real vector.
Derive the robustness function.

(c) Revise the system dynamics from eq.(343) to:

y(t) = λũ(t) (346)

where λ is a known positive constant and the nominal input function, ũ(s) = e−µs, drives
the system. The output is measured with a noisy sensor at N different times, t1, . . . , tN ,
and the measured outputs are y1, . . . , yN . The actual system response at time tj is
y(tj, ũ) = λũ(tj) and the squared error of the measurements is:

S(λ, ũ) =
N∑

j=1

[yj − y(tj , ũ)]
2 (347)

Derive an explicit algebraic expression for the least squared error estimate of λ.
(d) Revise the system dynamics from eq.(346) to:

y(t) = λu(t) (348)

where λ is a known positive constant and u(t) is uncertain according to the info-gap model
of eq.(344) with known nominal input function, ũ(s) = e−µs where µ > 0. The output is
measured with a noisy sensor at N different times, t1, . . . , tN , and the measured outputs
are y1, . . . , yN . The actual system response at time tj is y(tj , u) = λu(tj). The same
function, u(s), drives the system at each measurement time, but the form of this function is
uncertain. The measurement times are all different so the values of u(t1), . . . , u(tN ) may
be different. We require that the squared error, S(λ, u), not exceed the critical value Sc.
Derive an explicit algebraic expression for the inverse of the robustness function.
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79. Tube obstructions (036057, based on exam, 20.1.2015), (p.279). A hidden tube (e.g. blood
vessel or subterranean pipeline) has obstructions at various unknown points. We can investi-
gate the tube in an interval [y − r, y + r]. If we find the obstruction, then the resulting value
is:

V (b) =

∫ y+r

y−r
b(x) dx (349)

where b(x) is a real-valued function: b(x) > 0 means benefit, while b(x) < 0 means loss.
The function b(x) is uncertain, with estimate b̃(x). The sign of b̃(x) varies along its length,
representing estimated benefits and losses. Uncertainty is represented by this info-gap model:

U(h) =
{
b(x) :

∣∣∣∣∣
b(x)− b̃(x)

b̃(x)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (350)

(a) We require that the value of the benefit be no less than Vc. Derive an explicit algebraic
expression for the robustness function.

(b) Continue part (79a) with a different info-gap model. The benefit function is a polynomial in
x:

b(x) =
N∑

i=1

aix
i = aT ξ (351)

where a is a vector of coefficients and ξ = (x1, x2, . . . , xN )T . The coefficients are uncer-
tain and the info-gap model is:

U(h) =
{
b(x) = aT ξ : (a− ã)TW (a− ã) ≤ h2

}
, h ≥ 0 (352)

where ã and W are known and W is a real, symmetric, positive definite matrix. Derive an
explicit algebraic expression for the robustness function.

(c) We now modify the problem. Investigation of the tube in the interval [y − r, y + r] has
probability p for finding an obstruction. The benefit from finding an obstruction has value
b. However, if we don’t find an obstruction, the damage done causes loss with value −d
(where d is a positive number). What is the average value of an investigation?

(d) Continue part (79c) but now let b, d and p be uncertain according to the following fractional-
error info-gap model:

U(h) =
{
b, d, p :

∣∣∣∣∣
b− b̃

b̃

∣∣∣∣∣ ≤ h, b ≥ 0,

∣∣∣∣∣
d− d̃

d̃

∣∣∣∣∣ ≤ h, d ≥ 0,

∣∣∣∣∣
p− p̃

sp

∣∣∣∣∣ ≤ h, p ∈ [0, 1]

}
, h ≥ 0

(353)
where b̃, d̃, p̃ and sp are known positive numbers. We require that the average value of the
investigation be no less than the value Vc. Derive an explicit algebraic expression for the
inverse of the robustness function.

(e) Return to part (79a) but with a different info-gap model:

U(h) =
{
b(x) :

∣∣∣b(x)− b̃0
∣∣∣ ≤ hw(x)

}
, h ≥ 0 (354)

where b̃0 is a known positive constant and:

w(x) =

{
w0 if y − r ≤ x ≤ x0

0 if x0 < x ≤ y + r
(355)

where w0 and x0 are known positive constants and y − r ≤ x0 ≤ y + r. Derive an explicit
algebraic expression for the robustness, and explain its dependence on the value of x0.
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TABLE 6-1 STRESS CONCENTRATION FACTORS

Notation

Theoretical stress concentration factor nom Nominal normal stress de ned for each

in elastic range case (

Applied stress ( max Maximum normal stress at stress raiser (
Applied axial force ( nom Nominal shear stress de ned for each

Applied moment (F L) case (

Applied moment per unit length (F L max Maximum shear stress at stress raiser (
Applied torque (F L

Refer to gures for the geometries of the specimens.

I. Notches and Grooves

Type of Stress Raiser Loading Condition Stress Concentration Factor

1.
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max σ, σ

998 790 for 0

2
7
4

T
A

B
L

E
6
-1

S
tr

e
s
s

C
o

n
c
e
n

tr
a
tio

n
F

a
c
to

rs

Figure 18: Stress concentration geometry for problem 80.

80. Stress concentration factor (035018, based on exam, 31.5.2015), (p.281). Consider a small
notch in the surface of a large solid under uniaxial tension σ, as in fig. 18. The depth of the
notch is d (denoted h in the figure) and the radius of curvature of the tip of the notch is r. The
stress concentration factor (SCF), K, is the ratio of the maximal stress at the tip of the notch to
the stress, σ, far from the notch. A theoretically based empirical relation is:

K = a+ b

√
d

r
(356)

where a and b are positive empirical coefficients.

(a) The radius of curvature is estimated to be r̃ with error sr. The fractional error is unknown
and uncertainty is represented with this info-gap model:

U(h) =
{
r : r ≥ 0,

∣∣∣∣
r − r̃

sr

∣∣∣∣ ≤ h

}
, h ≥ 0 (357)

We require that the SCF be no greater than the critical value Kc:

K ≤ Kc (358)

Derive an explicit algebraic expression for the robustness.
(b) Define c = (a, b)T as the vector of coefficients in eq.(356) and define the vector g =

(1,
√
d/r)T . Thus K = cT g. The coefficients are uncertain as represented by an ellipsoid-

bound info-gap model:

U(h) =
{
c : (c− c̃)TW (c− c̃) ≤ h2

}
, h ≥ 0 (359)

where c̃ is a known vector and W is a known, real, positive definite, symmetric matrix.
The performance requirement is eq.(358). Derive an explicit algebraic expression for the
robustness.

(c) Assume that the radius, r, in eq.(356) is a random variable with a normal distribution with
mean µ and variance s2. The probability of failure, which we denote Pf , is the probability
of violating eq.(358). Derive an explicit algebraic expression for Pf .

This figure is from http://www.ewp.rpi.edu/hartford/˜ ernesto/Su2012/EP/MaterialsforStudents/Aiello/Roark-Ch06.pdf
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(d) Continuing part 80c, let the mean, µ, and standard deviation, s, be uncertain according to
this fractional-error info-gap model:

U(h) =
{
µ, s :

∣∣∣∣
µ− µ̃

µ̃

∣∣∣∣ ≤ h, s ≥ 0,

∣∣∣∣
s− s̃

s̃

∣∣∣∣ ≤ h

}
, h ≥ 0 (360)

We require that the probability of failure be no greater than the critical value Pc:

Pf ≤ Pc (361)

Combining eqs.(356) and (358), let us define a “critical radius” in terms of the critical SCF:

rc = d
(

b
Kc−a

)2
. Assume that the estimated mean, µ̃, exceeds rc. Derive an explicit

algebraic expression for the inverse of the robustness function.
(e) Consider the SCF at small radii, for which eq.(356) can be approximated as:

K = b

√
d

r
(362)

The estimated values of the coefficient b for two different materials are b̃1 and b̃2 where
b̃1 > b̃2. However, the fractional errors of the true values are uncertain, as represented by
this info-gap model:

U(h) =
{
b1, b2 : bi ≥ 0,

∣∣∣∣∣
bi − b̃i

b̃i

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (363)

For each material, derive an explicit algebraic expression for the robustness of satisfying
the performance requirement in eq.(358). For what range of Kc values do you robustly
prefer option 2?

(f) Consider the SCF at all radii, for which we must use eq.(356). The estimated values of
the coefficients a and b for two different materials are (ã1, b̃1) and (ã2, b̃2) where ã1 < ã2

and b̃1 > b̃2. Let Ki(r) denote the SCF for material i as a function of the radius r. From
eq.(356) we see that K1(r) > K2(r) at small radii, and K1(r) < K2(r) at large radii. Let r×
denote the radius at which the SCF curves of the two materials cross.

The fractional errors of the true values of ai and bi are uncertain, as represented by this
info-gap model:

U(h) =
{
(ãi, b̃i) : ai ≥ 0,

∣∣∣∣
ai − ãi
ãi

∣∣∣∣ ≤ h, bi ≥ 0,

∣∣∣∣∣
bi − b̃i

b̃i

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (364)

For each material, derive an explicit algebraic expression for the robustness of satisfying
the performance requirement in eq.(358). For what range of Kc values do you robustly
prefer material 1?
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Figure 19: Two sensors for locating target in problem 81.

81. Triangulation (035018, based on exam, 8.7.2015), (p.283). Consider two sensors on the x

axis that triangulate the position, (xt, yt), of a target in the x-y plane, as in fig. 19. The distance
between the two sensors is D and their angular measurements are θ1 and θ2. The triangulated
coordinates are:

xt(D) = D
tan θ2

tan θ1 + tan θ2
= ρD (365)

yt(D) = D
tan θ1 tan θ2

tan θ1 + tan θ2
(366)

where ρ is defined in eq.(365). Assume the angles θ1 and θ2 are between 0 and π/2 radians.

(a) The estimated distance between the sensors is D̃, but the true value, D, is uncertain as
represented by this info-gap model:

U(h) =
{
D : D ≥ 0,

∣∣∣∣∣
D − D̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (367)

where s is a known positive constant. We require that the estimated x coordinate, xt(D̃),
differ from the correct value, xt(D), by no more than ε:

∣∣∣xt(D̃)− xt(D)
∣∣∣ ≤ ε (368)

Derive an explicit algebraic expression for the robustness function.
(b) Let De be an alternative positive estimate of the distance between the sensors, where

De ≥ D̃. We will use the observed angles and the value of De to estimate xt as xt(De)

with eq.(365). The true value of xt could be evaluated as xt(D) from eq.(365), but D is
uncertain as expressed by eq.(367). We require an estimation error no greater than ε:

|xt(De)− xt(D)| ≤ ε (369)

Derive an explicit algebraic expression for the robustness function. For what values of ε do
we robust-prefer to estimate with De > D̃, and for what values of ε do we prefer De = D̃?

(c) The measurement team has spotted a target and reported triangulation angles θ1 and θ2.
They think these measurements were made when the distance between the sensors was
D̃, a known value. They thus recommend evaluating xt as xt(D̃) with eq.(365). Actually,
however, D was a random variable with an exponential distribution:

p(D) = λe−λD, D ≥ 0 (370)

where λ = 1/D̃. Derive an explicit algebraic expression for the probability that the true
distance, xt(D), exceeds the estimate, xt(D̃), by at least ε. Denote this probably Pf .
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(d) Continue from part 81c and suppose that the exponential coefficient, λ, is uncertain ac-
cording to this info-gap model:

U(h) =
{
λ : λ > 0,

∣∣∣∣∣
λ− λ̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (371)

where λ̃ = 1/D̃ is known. We require that Pf be no greater than the critical value Pc.
Derive an explicit algebraic expression for the robustness.

(e) We now have n pairs of sensors on the x axis, each pair like those in part 81a, all triangu-
lating on the same target. The estimated distance between the sensors of the jth pair is
the known value D̃j , while the true distance at the time of measurement, Dj , is uncertain
according to this info-gap model:

U(h) =
{
D = (D1, . . . , Dn) : Dj ≥ 0,

∣∣∣∣∣
Dj − D̃j

sj

∣∣∣∣∣ ≤ h, j = 1, . . . , n

}
, h ≥ 0 (372)

where each sj is a known positive constant. The measurement team for each pair of
sensors has reported triangulation angles on the target, and has reported its estimate of
xt as xt(D̃j) using eq.(365). The true value would have been obtained by each team as
xt(Dj), using eq.(365), but the true value Dj is unknown. We calculate the average of the
n reported values as:

x(D̃) =
1

n

n∑

j=1

xt(D̃j) (373)

where D̃ is the vector of estimated distances. We require that the estimate deviate from
the true value, xt, by no more than ε:

∣∣∣x(D̃)− xt
∣∣∣ ≤ ε (374)

Derive an explicit algebraic expression for the robustness function.
(f) We have made 5 statistically independent measurements of xt where each measurement

is corrupted by identically distributed normal noise. The measurements are 7.4, 7.0, 7.2,
6.9 and 7.6. One team claims that the true value of xt is X = 6.9, and another team claims
that this is false. Stating these claims as statistical hypotheses:

H0 : xt = 6.9 (375)

H1 : xt 6= 6.9 (376)

Do you accept or reject H0 at the 0.01 level of significance? Explain.
(g) We have a single target located at (xt, yt), and n pairs of sensors on the x axis used to

measure xt. These measurements are statistically independent and normally distributed
around the true value of xt, which we denote µ. Thus the measurement from the jth pair
of sensors is:

xt,j ∼ N (µ, σ2) (377)

where σ2 is the known variance of each estimate. Let x denote the mean of the n mea-
surements. For any given value of a constant, δ, derive an explicit algebraic expression for
the probability that x exceeds µ+ δ. Denote this probability Pf .

(h) Continue from part 81g and let δ = σ. Find the smallest integer value of n (smallest sample
size) so that Pf ≤ 0.05.
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82. New zoonotic disease (p.286). A new and possibly zoonotic disease is moving up an estuary
from the sea. The distance of the disease front from the coast seems to be progressing as a
function of time according to the relation:

x(t) = a
√
t (378)

The coefficient a has been roughly estimated as ã, but the true value of a could deviate from
ã by a fraction f or more, though a must be non-negative. We represent the uncertainty in the
value of a with this fractional-error info-gap model:

U(h) =
{
a : a ≥ 0,

∣∣∣∣
a− ã

f ã

∣∣∣∣ ≤ h

}
, h ≥ 0 (379)

(a) The disease has not reached human settlement, and the town closest to the sea is a
distance xc from the coast. The public health department wants to know how much time,
T , they have until the disease reaches the town. Derive the robustness function and use it
to discuss a confident choice of T .

(b) We repeat part (82a) with a different info-gap model. Eq.(378), with the estimated coeffi-
cient ã, is our best estimate of the rate of progress of the disease front. We denote that
function as x̃(t). However, this functional form may be wrong. We do believe that the front
does not regress, but the shape of the true function, x(t), may deviate fractionally from
x̃(t) by an unknown amount. We represent this with the following info-gap model:

U(h) =
{
x(t) :

dx(t)

dt
≥ 0,

∣∣∣∣
x(t)− x̃(t)

x̃(t)

∣∣∣∣ ≤ h

}
, h ≥ 0 (380)

Derive the robustness function and discuss the choice of a value of T .
(c) We modify the problem as follows. Eq.(378) is the correct functional form, but the value

of a is uncertain and represented as an exponential random variable whose probability
density function is:

p(a) = λe−λa, a ≥ 0 (381)

Derive an expression for the probability that the disease front will reach the town no later
than time T . Call this probability Pf(T ), the probability of failure.

(d) Continuing part 82c, we consider the exponential coefficient λ as being info-gap-uncertain.
Its estimated value is λ̃, which could err by as much as s or more. We use the following
fractional-error info-gap model:

U(h) =
{
λ : λ ≥ 0,

∣∣∣∣∣
λ− λ̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (382)

We require that the probability of failure be no greater than the critical value Pc. Derive the
robustness function and discuss the choice of a value of T .
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83. Surveillance and remediation (p.289). You have a fixed budget, B, that you can divide be-
tween N tasks: surveillance, remediation, etc. The allocations, b1, . . . , bN , are non-negative
and use up the entire budget.

(a) The benefit resulting from allocating budget bi to task i is:

ri(bi) = λibi, i = 1, . . . , N (383)

where λi is uncertain according to a fractional-error info-gap model:

U(h) =
{
λ : λi ≥ 0,

∣∣∣∣∣
λi − λ̃i

λ̃i

∣∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (384)

The λ̃i are known and positive. We require that the total benefit be no less than the positive
value rc. Derive the robustness function and find the robustness-maximizing allocation.

(b) Now consider a different fractional-error info-gap model, representing different uncertain-
ties for the various tasks. Instead of eq.(384) we have:

U(h) =
{
λ : λi ≥ 0,

∣∣∣∣∣
λi − λ̃i
si

∣∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (385)

where each λ̃i and si is known and positive. Derive the robustness function.
(c) Continue part 83b. Let s(1) denote the vector of uncertainty weights, si in eq.(385). An

expert consultant proposes a different vector of uncertainty weights, s(2). Some of the
elements of s(2) are larger, and some smaller, than the corresponding elements of s(1).
The consultant explains that some of our error-estimates were overly optimistic, and some
overly pessimistic (which is which?). The consultant claims that s(2) reflects better knowl-
edge. Does this better knowledge entail greater robustness to the residual uncertainty?

(d) Now consider a different info-gap model, in which the uncertain coefficients λi are corre-
lated. Specifically, consider the ellipsoidal-bound info-gap model:

U(h) =
{
λ : (λ− λ̃)TS(λ− λ̃) ≤ h2

}
, h ≥ 0 (386)

where S is a known, real, positive definite, symmetric matrix. Derive the robustness func-
tion and find the robustness-maximizing budget allocation.
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84. Managerial attention, (p.291). A manager must allocate time between two tasks. The time
allocated to the ith task is ti, and the total time available is T . The reward from task i resulting
from this allocation is:

ri(ti) = λiti (387)

The total reward, r(t), is the sum of the two single-task rewards. We require that the total reward
exceed rc.

(a) The coefficients λi are uncertain, as expressed by the following info-gap model:

U(h) =
{
λi : λi > 0,

∣∣∣∣∣
λi − λ̃i

λ̃i

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (388)

where λ̃i is known and positive and λ̃1 < λ̃2. Derive an expression for the robustness and
find the putative-optimal and robust-optimal time allocations.

(b) The coefficients λi are uncertain, as expressed by the following info-gap model:

U(h) =
{
λi : λi > 0,

∣∣∣∣∣
λi − λ̃i
si

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (389)

where si and λ̃i are known and positive and where:

λ̃1 < λ̃2 and
λ̃1
s1

>
λ̃2
s2

(390)

Derive an expression for the robustness and find the putative-optimal and robust-optimal
time allocations.

See related problem: #18 in \lectures\p mgt\p-mgt-hw02.tex.
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85. Search and destroy, (p. 292). Consider allocation of resources to search for and destroy an
agent (invasive species, enemy alien, terrorist, etc.). The region of responsibility is divided into
n sites where, for site i:

pi = probability that the agent is present.

xi = surveillance effort, in units of cost.

λi = surveillance efficiency.

e−λixi = probability of failing to detect the agent if it is present.

CD
i = expected cost of incursion management if the agent is detected.

CU
i = expected cost if the agent is present but undetected (and hence does damage). We

assume
that CU

i > CD
i .

Ti(xi) = expected combined surveillance and incursion management cost, where:

Ti(xi) = xi +
[(
1− e−λixi

)
CD
i + e−λixiCU

i

]

︸ ︷︷ ︸
γi(xi)

pi (391)

This defines γi which is positive because CU
i > CD

i .

B = total budget.

n = number of sites.

The probability of presence, pi, is estimated to be p̃i, which is small, typically between 0 and
0.09. The estimated error of p̃i is si, but the true probability, pi, may differ from p̃i by more. Use
a fractional-error info-gap model:

U(h) =
{
p : 0 ≤ pi ≤ 1,

∣∣∣∣
pi − p̃i
si

∣∣∣∣ ≤ h, i = 1, . . . , n

}
, h ≥ 0 (392)

(a) First consider only a single site, i. We must choose the surveillance effort, xi, and we want
the combined cost, Ti(xi), to be no greater than Tc. Derive the robustness function. Will
the putative-optimal surveillance effort be the most robust effort for all values of Tc?

(b) Now consider all n sites, and the budget constraint:

B =
n∑

i=1

xi (393)

The total combined expected cost considering all n sites is:

T (x) =
n∑

i=1

Ti(xi) =
n∑

i=1

[xi + piγi(x)i)] (394)

Now we require that the total cost not exceed the critical value, Tc. Derive an expression
for the inverse of the robustness function for a given allocation, x.

Based on models developed in: Cindy E. Hauser and Michael A. McCarthy, 2009, Streamlining ‘search and destroy’:
Cost-effective surveillance for invasive species management, Ecology Letters, 12: 683–692.
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86. Regression with asymmetric uncertainty, (035018 exam, 21.10.2015) (p.295) Two measure-
ments, y1 and y2, have been made at successive time steps. It is suspected that y1 is an over
estimate of the true value, y1, by as much as s1 or more. Furthermore, it is suspected that y2
deviates from the true value, y2, either above or below, by s2 or more. We will represent this
uncertainty with this info-gap model:

U(h) =
{
y1, y2 : 0 ≤ y1 − y1

s1
≤ h,

∣∣∣∣
y2 − y2
s2

∣∣∣∣ ≤ h

}
, h ≥ 0 (395)

We wish to choose a linear regression of the form:

yri = ci+ b, i = 1, 2, . . . (396)

The squared error, with respect to measurements y = (y1, y2), of a regression with coefficients
q = (c, b) is:

S(q, y) =
2∑

i=1

(yi − yri)
2 (397)

If we knew that the measurements y = (y1, y2) were reliable we might choose the coefficients
q to minimize S(q, y). However, given the uncertainty in the measurements, and especially
the asymmetric uncertainty in y1, we wish to choose the coefficients q so that the regression
reflects the measurements, y, as well as the information about the uncertainty in these mea-
surements. That is, we want the squared error to be small for a wide range of realizations of y
as represented by the info-gap model. Consequently our performance requirement is:

S(q, y) ≤ Sc (398)

(a) Let q̃ = (c̃, b̃) denote the regression coefficients for which the regression intersects both
measurements, y. Derive the robustness function for these coefficients.

(b) Let q = (c, b) denote the regression coefficients for a regression that intersects measure-
ment y2 and that falls below the value of y1. Derive the inverse of the robustness function
for these coefficients.

(c) Let q = (c, b) denote the regression coefficients for a regression that intersects measure-
ment y2 and that falls above the value of y1. Derive the inverse of the robustness function
for these coefficients.

(d) If yri is the correct regression then a prediction, x, that is based on the regression, is normal
with mean 0 and standard deviation 1.5. We have observed 6 statistically independent
values of x, all evaluated with the same yri and for data from the same situation (so if this
yri is correct for one then it is correct for all). These observed x values fall in 4 different
ranges:

n1 = 1 value in the range [−∞, −2)

n2 = 3 values in the range [−2, 0)

n3 = 2 values in the range [0, 2)

n4 = 0 values in the range [2, ∞)

Consider the following two hypotheses:

H0 : yri is the correct regression (399)

H1 : yri is not the correct regression (400)

Given the observations, do you accept H0 at 0.05 level of significance?
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(e) We now know that y is distributed uniformly in the interval [x, y]. Find the value, denoted
yα(x), such that:

Prob[y ≤ yα(x)] = α (401)

(f) Continue part 86e but consider uncertainty in the value of x. We think the correct value is
x̃, but this could err by as much as w or more. Represent this uncertainty with this info-gap
model:

U(h) =
{
x :

∣∣∣∣
x− x̃

w

∣∣∣∣ ≤ h

}
, h ≥ 0 (402)

We require that yα(x̃) over-estimate the true value, yα(x), by no more than ε:

yα(x̃)− yα(x) ≤ ε (403)

Derive an explicit algebraic expression for the robustness function.
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87. Quantiles with asymmetric uncertainty, (p.298) x is a non-negative random variable with
probability density function (pdf) p(x). The system we are designing will fail if x is too large. We
want to know the largest value of x for which the probability of not exceeding this value is 1−α.
This value is called the (1− α) quantile of x, denoted qα, and defined in the relation:

1− α =

∫ qα

0
p(x) dx (404)

(a) Derive an explicit algebraic expression for the (1 − α) quantile of x using the exponential
distribution:

p̃(x) = λ̃e−λ̃x (405)

(b) Now suppose that the true pdf of x, denoted p(x), is exponential but the coefficient of the
distribution, λ, is uncertain. The best available estimate is λ̃ (which is positive) but we
suspect that this is an under estimate. We represent the uncertainty in the pdf of x with
this info-gap model:

U(h) =
{
p(x) = λe−λx : 0 ≤ λ− λ̃

s
≤ h

}
, h ≥ 0 (406)

where s is a known positive constant. We will estimate the (1 − α) quantile using p̃(x) in
eq.(405), but this will be an over estimate (explain why):

0 ≤ qα(p) ≤ qα(p̃) (407)

We require that this over estimate not err by more than ε:

qα(p̃)− qα(p) ≤ ε (408)

Derive an explicit algebraic expression for the robustness if we estimate the quantile as
qα(p̃).

(c) We continue with the info-gap model of eq.(406) but we estimate the quantile with an
exponential distribution whose coefficient, λe, is greater than λ̃. For convenience we will
denote quantiles according to the exponential coefficient, so our estimate of the quantile
is qα(λe) and we require that the absolute error of this estimate not exceed ε:

|qα(λe)− qα(λ)| ≤ ε (409)

Derive an algebraic expression for the inverse of the robustness function. Explore the
crossing of these robustness curves with the robustness curve of part 87b.
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88. Evaluating a complex system with sub-systems of uncertain i mportance (p.299).

We consider the design of a complex system with sub-systems and sub-sub-systems. We
evaluate the overall system with a quadratic function expressing the importance of the sub- and
sub-sub-systems. This evaluation is uncertain, so the design is uncertain. We evaluate the
robustness to this uncertainty, as the basis for design decisions.

(a) Consider N different sub-systems, where each sub-system has J sub-sub-systems. Let
qnj denote the quantity of resources devoted to sub-sub-system j in sub-system n. Q is
the N × J matrix of quantities qnj. The overall effectiveness of the system is evaluated as:

E =
N∑

n=1

vn

J∑

j=1

wjqnj = vTQw (410)

where v ∈ ℜN is the vector of “values” of the sub-systems, and w ∈ ℜJ is the vector of
“worths” of the sub-sub-systems. We would like to choose the quantities, Q, so that the
effectiveness if large. However, the values are uncertain according to this info-gap model:

U(h) =
{
v : (v − ṽ)TA(v − ṽ) ≤ h2

}
, h ≥ 0 (411)

where A is a known real, symmetric, positive definite matrix and ṽ is a known vector. We
require that the effectiveness be no less than the critical value, Ec. Derive an explicit
algebraic expression for the robustness.

(b) We continue part 88a where we now consider uncertainty in both the values and the
worths:

U(h) =
{
v : (v − ṽ)TA(v − ṽ) ≤ h2, (w − w̃)TB(w − w̃) ≤ h2

}
, h ≥ 0 (412)

where we assume that the matrices A and B are defined so that both quadratic forms are
dimensionless. Derive an explicit algebraic expression for the robustness.

(c) We now modify part 88a so that the sub-sub-system worths take different values in each
sub-system. Thus, wjn is the worth of sub-sub-system j in sub-system n. W is the J ×N

matrix of worths. The total effectiveness of the system is:

E =
N∑

n=1

vn

J∑

j=1

qnjwnj (413)

The values v and worths W are uncertain according to this info-gap model:

U(h) =
{
v,W : vn ≥ 0,

∣∣∣∣
vn − ṽn
sn

∣∣∣∣ ≤ h, ∀ n. wnj ≥ 0,

∣∣∣∣∣
wnj − w̃nj

tnj

∣∣∣∣∣ ≤ h, ∀ j, n
}
, h ≥ 0

(414)
where the sn’s and tjn’s are known and positive. Derive an explicit algebraic expression
for the inverse of the robustness.

(d) We now repeat part 88c with the following modified info-gap model:

U(h) =
{
v,W,Q : vn ≥ 0,

∣∣∣∣
vn − ṽn
sn

∣∣∣∣ ≤ h, ∀ n. wnj ≥ 0,

∣∣∣∣∣
wnj − w̃nj

tnj

∣∣∣∣∣ ≤ h, ∀ j, n.

qnj ≥ 0,

∣∣∣∣∣
qnj − q̃nj
unj

∣∣∣∣∣ ≤ h, ∀ j, n
}
, h ≥ 0 (415)

This problem is explored in detail in section 16 of the Lecture Notes on Robustness and Opportuneness.
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where the sn’s, tjn’s and unj ’s are known and positive. Uncertainty in v and W reflects
uncertainty in assessing the importance of various sub-systems. Uncertainty in Q reflects
uncertainty in the actual quantities that would be produced. This production uncertainty is
particularly relevant for new technologies whose production may entail unknown develop-
ment challenges. Derive an explicit algebraic expression for the inverse of the robustness.

(e) We now repeat part 88c with the following modified info-gap model:

U(h) =
{
v,W :

∣∣∣∣
vn − ṽn
sn

∣∣∣∣ ≤ h, ∀ n.
∣∣∣∣∣
wnj − w̃nj

tnj

∣∣∣∣∣ ≤ h, ∀ j, n
}
, h ≥ 0 (416)

Derive an explicit algebraic expression for the inverse of the robustness.
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89. Uncertain linear elasticity (based on exam 035018, 22.5.2016) (p.306). Consider a linear
elastic system whose stress-strain relation is described by:

ε =
ε1
σ1
σ for 0 ≤ σ (417)

The values of ε1 and σ1 define the endpoint of the linear-elastic domain in an idealized elasto-
plastic model, though we will employ this model for all positive values of stress, σ.

(a) The values of ε1 and σ1 are uncertain, as expressed by this info-gap model:

U(h) =
{
(ε1, σ1) : ε1 ≥ 0,

∣∣∣∣
ε1 − ε̃1
ε̃1

∣∣∣∣ ≤ h, σ1 ≥ 0,

∣∣∣∣
σ1 − σ̃1
σ̃1

∣∣∣∣ ≤ h

}
, h ≥ 0 (418)

where ε̃1 and σ̃1 are known and positive. A known positive stress, σ0, will be applied, and
we require that the strain not exceed the value ε0. Derive an explicit algebraic expression
for the robustness function.

(b) Return to the linear elastic model in eq.(417) and suppose the ε1 is known but σ1 is a
random variable with an exponential distribution:

p(σ1) = λe−λσ1 , σ1 ≥ 0 (419)

As before, we require that the strain not exceed the value ε0. Derive an explicit algebraic
expression for the probability of failure, namely, the probability that the strain exceeds ε0.

(c) Continuing from part 89b, suppose that the threshold for mechanical failure, ε0, is uncertain
as represented by this info-gap model:

U(h) =
{
ε0 : ε0 ≥ 0,

∣∣∣∣
ε0 − ε̃0
s

∣∣∣∣ ≤ h

}
, h ≥ 0 (420)

We require that the probability of failure not exceed the critical value Pc, which is strictly
less than 1. Derive an explicit algebraic expression for the robustness function for this
probabilistic requirement.

(d) Return to part 89a and derive an explicit algebraic expression for the opportuneness func-
tion, if we aspire to achieve a strain that is at least as small as εw, which is strictly greater
than zero.

(e) Let us continue with eq.(417) but assume that ε1 and σ1 are known. However, the stress σ
is the result of a vector of forces, f , acting on the body:

σ = ψT f (421)

where ψ is a known vector. The force vector, f , is uncertain, as described by this ellipsoid-
bound info-gap model:

U(h) =
{
f :

(
f − f̃

)T
W−1

(
f − f̃

)
≤ h2

}
, h ≥ 0 (422)

where f̃ and W are known and W is a real, symmetric, positive definite matrix. We require
that the strain not exceed the critical value ε0. Derive an explicit algebraic expression for
the robustness function.
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(f) ‡ We now modify the stress-strain relation in eq.(417) by delimiting the range of validity of
the linear relation:

ε =
ε1
σ1
σ for 0 ≤ σ ≤ σ1 (423)

The values of ε1 and σ1 define the endpoint of the linear-elastic domain in an idealized
elasto-plastic model. However, the values of ε1 and σ1 are uncertain as specified in the
info-gap model of eq.(418) which we now denote U1(h). Hence, we do not know the upper
limit, σ1, of the domain of applicability of the linear relation. Let us suppose additional
information about the stress-strain relation. Specifically, for σ > σ1, the fractional error of
the true strain function, ε(σ), with respect to the linear model in eq.(417), is unknown:

∣∣∣∣ε(σ)−
ε1
σ1
σ

∣∣∣∣ ≤
ε1
σ1
σh, for σ > σ1 (424)

We now formulate the overall info-gap model:

U(h) =
{
ε(σ) : for 0 ≤ σ ≤ σ1 : ε(σ) =

ε1
σ1
σ, (ε1, σ1) ∈ U1(h)

for σ1 < σ :

∣∣∣∣ε(σ) −
ε1
σ1
σ

∣∣∣∣ ≤
ε1
σ1
σh

}
(425)

Derive the inverse of the robustness function for the requirement that the strain not exceed
the critical value ε0 with known positive applied stress σ0.
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90. Time to recovery, (p.308). An important property of many technological systems is the time
to recovery after a disruptive event. A building after an earthquake, an airplane after loss
of an engine, a micro-sensor after excessive shock loading, etc., all need to recover critical
functionalities within specified times.

We will compare two generic design concepts, one denoted ‘State of the Art’ (SotA) and the
other called ‘New and Innovative’ (NaI). These systems are subject to generic loads. We require
that the time to recovery of basic functions of the system, after an adverse event, not exceed a
critical value, tc. Let tq(a) denote the time to recovery after an event whose load amplitude is a,
where q = 0 denotes SotA and q = 1 denotes NaI.

(a) The recovery-time functions for the two designs, SotA and NaI respectively, are:

t0(a) =

{
0, if a < β0

α0(a− β0), if a ≥ β0
(426)

t1(a) =





0, if a < β1

α1(a− β1), if β1 ≤ a < δ1

γ1(a− δ1) + α1(δ1 − β1), if δ1 ≤ a

(427)

Show that these recovery-time functions cross one another, and discuss the meaning and
significance of this, assuming the following relations among the coefficients:

γ1 > α0 = α1 > 0, δ1 > β1 > β0 > 0 (428)

The load amplitude is estimated to be ã with an error estimate of s, but the error may be
greater. The uncertainty in the load is represented with this info-gap model:

U(h) =
{
a : a ≥ 0,

∣∣∣∣
a− ã

s

∣∣∣∣ ≤ h

}
, h ≥ 0 (429)

Assume that ã ≥ β1. Derive an explicit algebraic expression for the inverse of the robust-
ness function for each design. Show that these robustness curves cross one another if
eqs.(428) hold. What is the design implication of this?

(b) Instead of eqs.(426) and (427), the estimated recovery-time functions for the two designs
are:

t̃q(a) =

{
0 if a < βq

α(a− βq)
2, else

(430)

Assume that β1 > β0 > 0 and α > 0.

The load amplitude is not uncertain and is known to equal ã, where ã > β1. However, the
true recovery-time functions are fractionally uncertain, so the info-gap model is:

U(h) =
{
tq(a) : tq(a) ≥ 0,

∣∣∣tq(a)− t̃q(a)
∣∣∣ ≤ hwq t̃q(a), q = 0, 1.

}
, h ≥ 0 (431)

where each wq is known and positive and w1t̃1(ã) > w0t̃0(ã). Show that the nominal
recovery-time functions do not intersect, but that the robustness curves do intersect. Dis-
cuss the different origin of this preference reversal from part 90a. Specifically, compare
the robustness of a known system vulnerability to an uncertain externality (part 90a), to
the robustness of an uncertain system to a known externality (part 90b).

Based on \people\kanno\resilience2016\rsl003.tex.
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(c) Continue part 90b but now assume that the load amplitude is uncertain as in eq.(429). The
true recovery-time functions are also uncertain so the overall info-gap model is:

U(h) =
{
a, tq(a) : tq(a) ≥ 0,

∣∣∣tq(a)− t̃q(a)
∣∣∣ ≤ hwq t̃q(a), q = 0, 1.

a > 0,

∣∣∣∣
a− ã

s

∣∣∣∣ ≤ h
}
, h ≥ 0 (432)

where each wq is known and positive and w1t̃1(ã) > w0t̃0(ã). Assume that ã > β1 as
before. Derive the inverse of the robustness curves and show that they intersect. Derive
the inverse of the opportuneness curves.



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 107

91. Innovation dilemma of rural poverty. (p.311). Consider a subsistence level rural society.
The farmers use traditional tools and methods and the agricultural productivity is low. We will
refer to this system as the State of the Art (SotA) of this traditional society. An international aid
organization offers innovative new methods and tools. This innovative approach could greatly
increase the productivity. However, the new strains of plants have not been grown in this region,
the new production methods could entail social changes and upheavals, and the innovations
could result in much worse than anticipated outcomes, even endangering the survival of the
traditional society.

(a) Let x denote the agricultural productivity of wheat, in units of kg/ha. Anthropologists have
studied this traditional society and reported reliably that the traditional SotA methods have
yearly agricultural productivity of wheat that is normally distributed with an average of
µ0 = 1500 kg/ha, with a standard deviation of σ0 = 200 kg/ha. Denote this pdf p̃0(x).
Survival of the community requires yearly wheat productivity no less than xs = 1171 kg/ha.
Calculate the probability of survival, Ps(p̃0), with the traditional SotA. What is the average
interval between survival catastrophes?

(b) The innovative methods are estimated to have agricultural wheat productivity that is nor-
mally distributed with mean µ1 = 1850 kg/ha and standard deviation σ1 = 250 kg/ha,
whose pdf is denoted p̃1(x). Calculate the probability of survival, Ps(p̃1), with this esti-
mated pdf. What is the average interval between survival catastrophes with innovative
production methods?

(c) The estimated pdf for innovative methods, p̃1(x), is highly uncertain for values of x less
than the survival level, xs. Specifically uncertainty in the correct pdf of the innovative
agricultural productivity, p1(x), is described by this info-gap model:

U(h) =
{
p1(x) : p1(x) ≥ 0,

∫ ∞

0
p1(x) dx = 1, |p1(x)− p̃1(x)| ≤ hp̃1(xs) for x ≤ xs

}
, h ≥ 0

(433)
We require that the probability of survival be no less than Ps,c. Derive an explicit algebraic
expression for the robustness of satisfying the survival-probability requirement, using in-
novative methods, as a function of Ps,c.

(d) We can assume that the anthropologists’ determination of p̃0(x) is accurate. Derive an
explicit algebraic expression for the robustness of satisfying the survival-probability re-
quirement, using traditional SotA, as a function of Ps,c.

(e) For what values of Ps,c are the innovative methods robust-preferred over the traditional
SotA? Explain the innovation dilemma that confronts the traditional farmers.
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92. Elastic system with uncertainties. (p.313).

(a) Consider an elastic system subject to a distributed load f(x), for 0 ≤ x ≤ L that results in
angular rotation given by:

θ =
1

k

∫ L

0
xf(x) dx (434)

The known nominal load is f̃(x) which is positive everywhere, but the true load is uncertain
as described by this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣∣
f(x)− f̃(x)

f̃(x)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (435)

We require that the angle of rotation not exceed the critical value θc. Derive an explicit
algebraic expression for the robustness.

(b) Continue part 92a but now derive an explicit algebraic expression for the opportuneness
function, where the aspiration is that the angle of rotation not exceed the desirable value
θw. Are the robustness and opportuneness functions sympathetic or antagonistic, with
respect to change in the nominal angle of rotation? Explain.

(c) Repeat part 92a but with this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣∣
f(x)− f̃(x)

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (436)

where s is a known positive uncertainty weight. Consider two alternative designs with
known nominal positive loads f̃1(x) and f̃2(x) and known positive uncertainty weighs s1
and s2, respectively, where:

f̃1(x) > f̃2(x) > 0, 0 < s1 < s2 (437)

For what values of the critical rotation angle, θc, is design 1 robust-preferred?

(d) Repeat part 92a but now assume that the load function is a truncated Fourier series:

f(x) =
K∑

n=0

cn cosnπx = cT γ(x) (438)

where c is the vector of Fourier coefficients and γ(x) is the vector of corresponding cosine
functions. Uncertainty in the load function is represented with this info-gap model:

U(h) =
{
f(x) = cT γ(x) : cTWc ≤ h2

}
, h ≥ 0 (439)

where W is a known, real, symmetric, positive definite matrix. Derive an explicit algebraic
expression for the robustness.

(e) The angle of rotation of an elastic system is measured 5 times with a sensor that is cor-
rupted by zero-mean normal noise. The mean and variance of this statistical sample are
0.074 radian and 0.0001 radian2, respectively. Sam claims that the true angle of rotation is
0.062, while Sally claims that the true angle is greater than 0.062. Formulate and evaluate
a statistical test. Do you accept or reject Sam’s claim at 0.01 level of significance?

(f) An elastic system displays random angles of rotation that are normally distributed with
mean and variance of 0.06 radian and 0.0002 radian2, respectively. What is the probability
that the angle of rotation will exceed 0.07?
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(g) An elastic system displays random angles of rotation. Damage results only if the angle
exceeds a critical value. The probability that any single rotation angle exceeds the critical
value is 0.01. Given a random sample of M rotation angles, what is the probability that
exactly n rotation angles will exceed the critical value, if M = 6 and n = 2?

(h) A motion sensor classifies rotations of the elastic system as either “small” or “large”. The
probability of a small rotation is 0.3 under normal conditions. A random sample of detec-
tions contained 39 small rotations and 61 large rotations. Do you accept the claim that the
system is normal, at level of significance of 0.1?
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93. Stress-strain relation. (p.316).
(a) Consider the linear-elastic relation between stress, σ, and strain, ε:

σ = Eε (440)

The Young’s modulus, E, is uncertain according to this fractional-error info-gap model:

U(h) =
{
E : E ≥ 0,

∣∣∣∣∣
E − Ẽ

wy

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (441)

where Ẽ and wy are known positive constants.
i. (Problem 1, moed bet, August 2016) We require that the stress not exceed the critical

value σc. Assume that the strain is positive, and derive an explicit algebraic expression
for the robustness function.

ii. (Problem 1, moed bet, September 2016) We require that the stress not be less than
the positive critical value σc. Assume that the strain is positive, and derive an explicit
algebraic expression for the robustness function.

(b) (Problem 2, moed bet, August 2016) Use the linear-elastic relation between stress, σ, and
strain, ε in eq.(440) and assume that both E and ε are uncertain according to this info-gap
model:

U(h) =
{
E, ε : E ≥ 0,

∣∣∣∣∣
E − Ẽ

wy

∣∣∣∣∣ ≤ h,

∣∣∣∣
ε− ε̃

wε

∣∣∣∣ ≤ h

}
, h ≥ 0 (442)

where Ẽ, wy, ε̃ and wε are known positive constants. We require that the stress not
exceed the critical value σc. Derive an explicit algebraic expression for the inverse of the
robustness function. What is the value of the robustness if σc = 0? If σc = ∞? Derive an
explicit algebraic expression for the robustness if:

wε = ε̃, wy = Ẽ (443)

(c) (Problem 2, moed bet, September 2016) Use the relation in eq.(440) and consider σ and
E to be uncertain according to this info-gap model:

U(h) =
{
E, σ : E ≥ 0,

∣∣∣∣∣
E − Ẽ

wy

∣∣∣∣∣ ≤ h,

∣∣∣∣
σ − σ̃

wσ

∣∣∣∣ ≤ h

}
, h ≥ 0 (444)

where Ẽ, wy, σ̃ and wσ are known positive constants. We require that the strain exceed the
critical value εc. Derive an explicit algebraic expression for the inverse of the robustness
function. What is the value of the robustness if εc = 0? If εc = σ̃/Ẽ? If εc = −wσ/wy?

(d) Use the relation in eq.(440) and consider E to be known.
i. (Problem 3, moed bet, August 2016) Let ε be a uniformly distributed random variable:

p(ε) =
1

ε1
, 0 ≤ ε ≤ ε1 (445)

and zero otherwise, where ε1 is a known positive constant. The system fails if the
stress, σ, exceeds the critical value σc. Derive an explicit algebraic expression for the
probability of failure.

ii. (Problem 4, moed bet, August 2016) Continue from part 93(d)i with uncertainty in the
constant of the probability distribution:

U(h) =
{
p(ε) =

1

ε1
: ε1 ≥ 0,

∣∣∣∣
ε1 − ε̃1
s

∣∣∣∣ ≤ h

}
, h ≥ 0 (446)
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We require that the probability of failure not exceed the critical value Pc. Derive an
explicit algebraic expression for the inverse of the robustness function, and from that
derive an explicit algebraic expression for the robustness function.

(e) Use the relation in eq.(440) and consider E to be known.
i. (Problem 3, moed bet, September 2016) Let ε be an exponentially distributed random

variable:
p(ε) = λe−λε, ε ≥ 0 (447)

The system fails if the stress, σ, exceeds the critical value σc. Derive an explicit alge-
braic expression for the probability of failure.

ii. (Problem 4, moed bet, September 2016) Continue from part 93(e)i with uncertainty in
the exponential coefficient of the probability distribution:

U(h) =
{
p(ε) = λe−λε : λ ≥ 0,

∣∣∣∣∣
λ− λ̃

s

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (448)

We require that the probability of failure not exceed the critical value Pc. Derive an
explicit algebraic expression for the inverse of the robustness function, and from that
derive an explicit algebraic expression for the robustness function.

(f) Consider the following non-linear modification of the stress-strain relation:

σ =
N∑

n=1

Enε
n = xT y (449)

where xT is the vector of coefficients (E1, . . . , EN ) and yT is the vector of powers of the
strain (ε1, . . . , εN ). The coefficients x are uncertain according to this ellipsoidal-bound
info-gap model:

U(h) =
{
x : (x− x̃)TW−1(x− x̃) ≤ h2

}
, h ≥ 0 (450)

where x̃ is a known vector and W is a known, real, symmetric, positive definite matrix.
i. (Problem 5, moed bet, August 2016) We require that the stress exceed the critical

value σc. Derive an explicit algebraic expression for the robustness function.
ii. (Problem 5, moed bet, September 2016) We require that the stress not exceed the

critical value σc. Derive an explicit algebraic expression for the robustness function.
(g) A random sample of the strain at a particular point in a structure has 7 observations with

sample mean and variance of 6× 10−4 and 1× 10−7, respectively.
i. (Problem 6, moed bet, August 2016) Joe claims that the true strain is 1×10−4 while Jill

claims that the true strain is greater than 1 × 10−4. Formulate a statistical hypothesis
test. Do you accept or reject Joe’s claim at the 0.01 level of significance? Explain.

ii. (Problem 6, moed bet, September 2016) Joe claims that the true strain is 1 × 10−4

while Jill claims that the true strain is less , not greater, than 1 × 10−4. Formulate
a statistical hypothesis test. Do you accept or reject Joe’s claim at the 0.01 level of
significance? Explain.

(h) The strain, ε, is a random variable.
i. (Problem 7, moed bet, August 2016) The pdf of ε is:

p(ε) = − 2

ε20
ε+

2

ε0
, 0 ≤ ε ≤ ε0 (451)

and zero otherwise. What is the probability that the strain will not exceed ε0/4?



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 112

ii. (Problem 7, moed bet, September 2016) The pdf of ε is:

p(ε) =
2

ε20
ε, 0 ≤ ε ≤ ε0 (452)

and zero otherwise. What is the probability that the strain will exceed ε0/2?
(i) (Problem 8, moed bet, August 2016) A sample is tested and yields one of two possible

results: either “yes” or “no”. In normal circumstances the probability of “yes” is py =

1/2. A random sample of N = 100 observations has exactly Ny “yes” observations. Ted
claims that circumstances are normal. Formulate a statistical hypothesis test to test Ted’s
assertion. What is the smallest value of Ny that does not reject Ted’s assertion at 0.025
level of significance?

(j) (Problem 8, moed bet, September 2016) The strain of a mechanical element is observed
in a random sample with 90 observations, where 54 observations show “large” strain and
36 observations show “small” strain. In normal conditions the probability of “large” strain is
0.75. Susie claims that the observations were made on an element in normal conditions,
while Sam denies this. Formulate and implement a statistical hypothesis test to test Susie’s
claim. Do you accept or reject her claim at 0.02 level of significance?

94. Allocation of scarce resource (based on exam in 036057, 16.1.2017), (p.320). Consider
allocation of a scarce resource, such as time or money, among a number of different items.
Given N > 1 items and a total resource budget R, let rn denote the allocation to item n, for
n = 1, . . . , N , where rn ≥ 0. The benefit resulting from allocating rn to item n is rnbn where the
benefit per unit allocation, bn, is uncertain. The total benefit is B =

∑N
n=1 rnbn, and we require

that the total benefit be no less than the critical value Bc.

(a) The benefit per unit allocation is estimated as b̃n ± sn, but it may be either less or more,
where b̃n > 0 and sn > 0 are known. The info-gap model for uncertainty is:

U(h) =
{
b :

∣∣∣∣∣
bn − b̃n
sn

∣∣∣∣∣ ≤ h, n = 1, . . . , N

}
, h ≥ 0 (453)

Derive an explicit algebraic expression for the robustness function.
(b) Let b̃ and s denote the vectors of estimated benefits per unit allocation, b̃n, and error

weights, sn, respectively. Consider two different vectors of allocations r = (r1, . . . , rN )

and ρ = (ρ1, . . . , ρN ). These allocations satisfy the following relations:

rT b̃ > ρT b̃ (454)

rT b̃

rT s
<

ρT b̃

ρT s
(455)

What is an intuitive interpretation of these relations? Specifically, how do they reflect a
dilemma facing the decision maker? Using the answer to part 94a, derive an explicit
algebraic expression for the values of critical benefit, Bc, for which allocation r is robust-
preferred over allocation ρ.

(c) Return to the basic formulation of the problem, prior to part 94a, and consider two different
programs within which the resource can be allocated. Program 1 has nominal predicted
total benefit B1 which is a known positive number. However, the actual benefits are uncer-
tain and the robustness function for allocation vector r in program 1 is known and finite for
all values of Bc. Program 2 has exactly known benefits, and the total benefit is guaranteed
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to be B2 for the same allocation vector, r. However, B2 < B1. Derive an explicit algebraic
expression for the values of critical benefit, Bc, for which program 1 is robust-preferred
over program 2.

(d) Return to the basic formulation of the problem, prior to part 94a, and consider the following
ellipsoid-bound info-gap model for uncertainty in the benefit vector:

U(h) =
{
b : (b− b̃)TW−1(b− b̃) ≤ h2

}
, h ≥ 0 (456)

where W is a real, symmetric, positive definite N ×N matrix. Derive an explicit algebraic
expression for the robustness function.

(e) Suppose that the total benefit, B, is an exponentially distributed random variable, whose
probability density function is:

p(B) = λe−λB, B ≥ 0 (457)

What is the probability that the total benefit exceeds the critical value Bc?
(f) Continuing part 94e, suppose that you require that the probability of exceeding the critical

benefit, Bc, must be no less than the critical probability Pc. However, the critical benefit,
Bc, is uncertain (you don’t really know what you need). Use the following fractional-error
info-gap model:

U(h) =
{
Bc :

∣∣∣∣∣
Bc − B̃c

B̃c

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (458)

Derive an explicit algebraic expression for the robustness function for satisfying the prob-
abilistic requirement.

(g) Repeat part 94a with the following info-gap model:

U(h) =
{
b :

(
b− b̃

)T
W−1

(
b− b̃

)
≤ h2

}
, h ≥ 0 (459)

where W is a real, symmetric positive definite matrix. W and b̃ are known. Derive an
explicit algebraic expression for the robustness function.
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95. Continuous linear system (based on exam in 036057, 7.2.2017), (p.324). Background. The
response, y, of a linear system is described by:

y =

∫ +1

−1
u(x)f(x) dx (460)

where f(x) is a known function and u(x) is uncertain. We require that the response be no
greater than the critical value yc.
(a) The function f(x) is:

f(x) =

{
f0 if x ≥ 0

−f0 else
(461)

where f0 is a known positive value. Uncertainty in the function u(x) is represented by the
fractional-error info-gap model:

U(h) =
{
u(x) :

∣∣∣∣
u(x)− ũ

ũ

∣∣∣∣ ≤ h

}
, h ≥ 0 (462)

where ũ is a known and positive constant. Derive an explicit algebraic expression for the
robustness function.

(b) Return to the background, prior to part 95a. Uncertainty in the function u(x) is represented
by the energy-bound info-gap model:

U(h) =
{
u(x) :

∫ +1

−1
[u(x)− ũ(x)]2 dx ≤ h2

}
, h ≥ 0 (463)

where ũ(x) is a known finite-valued function. Derive an explicit algebraic expression for
the robustness function.

(c) Return to the background, prior to part 95a. The function u(x) is a truncated Taylor series:

u(x) =
m=N∑

m=1

am sinmπx = aTσ(x) (464)

which defines the vector a of coefficients and the vector σ(x) of sine functions. Uncertainty
in the function u(x) is represented by the ellipsoid-bound info-gap model:

U(h) =
{
u(x) = aTσ(x) : (a− ã)TW−1(a− ã) ≤ h2

}
, h ≥ 0 (465)

whereW is a known, symmetric, positive definite, real matrix, and ã is a known real vector.
Derive an explicit algebraic expression for the robustness function.

(d) Return to the background, prior to part 95a and consider two different designs of the
system, represented by two different choices of the known function, either f1(x) or f2(x),
where:

0 < f1(x) < f2(x) for all x ∈ [0, 1] (466)

f1(x) = 0 = f2(x) for all x ∈ [−1, 0) (467)

The uncertainty in u(x) is different in the two different designs. The info-gap model for
design i is the following fractional-error model:

U i(h) =

{
u(x) :

∣∣∣∣
u(x)− ũ

si

∣∣∣∣ ≤ h

}
, h ≥ 0, i = 1, 2 (468)

where ũ, s1 and s2 are known positive constants satisfying the relation:

s1

∫ 1

0
f1(x) dx > s2

∫ 1

0
f2(x) dx (469)

Derive an explicit algebraic expression for the range of yc-values for which design 2 is
preferred according to the robustness criterion.
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Figure 20: Guide surface for problem 96.

96. Guide surface (based on exam in 035018, 6.6.2018), (p.326). An object moves along a guide
surface as shown in fig. 20. This object determines the motion of other objects, e.g. optically
linked milling tools. The desired shape of the surface is specified by the function f̃(x). However
the actual shape, f(x), may differ in unknown ways. Assume that f̃(x) > 0. The performance
is assessed as:

B(f) =

∫ L

0
f(x)g(x) dx (470)

where g(x) is a known function that takes both positive and negative values. We require that
the performance with the actual surface, f(x), deviate from the anticipated performance based
on the specified surface, f̃(x), by no more than ε:

∣∣∣B(f)−B(f̃)
∣∣∣ ≤ ε (471)

(a) The uncertainty in the surface shape is specified by this info-gap model:

U(h) =
{
f(x) :

∣∣∣∣∣
f(x)− f̃(x)

f̃(x)

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (472)

Derive an explicit algebraic expression for the robustness function.
(b) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) = cTσ(x) : (c− c̃)TW (c− c̃) ≤ h2 c̃TWc̃

}
, h ≥ 0 (473)

where c is a vector of uncertain Fourier coefficients, c̃ is a known estimate of c, W is
a known, real, symmetric, positive definite matrix, and σ(x) is a vector of trigonometric
functions. Note that c̃TWc̃ is a normalization constant that assures that the horizon of
uncertainty, h, is dimensionless.

(c) Derive an explicit algebraic expression for the robustness function with this info-gap model:

U(h) =
{
f(x) :

∫ L

0

(
f(x)− f̃(x)

)2
dx ≤ h2

∫ L

0
f̃(x)2 dx

}
, h ≥ 0 (474)

Note that
∫ L
0 f̃(x)2 dx is a normalization constant that assures that the horizon of uncer-

tainty, h, is dimensionless.



ps2-02.tex PROBLEM SET ON ROBUSTNESS AND OPPORTUNENESS 116

97. Failure detection (based on exam in 035018, 17.7.2018), (p.328).

(a) The condition of a system will be assessed with a vector, c, of N measurements. In the
functional state the measurement vector should be c̃, which is a known vector. However,
the actual measured vector in the functional state varies uncertainly as described by this
info-gap model:

U(h) =
{
c :

∣∣∣∣
ci − c̃i
si

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (475)

where the si’s are known and positive. For any measurement, c, we will declare the system
“functional” if:

‖c− c̃‖2 ≤ ε2 (476)

where, for any vector, ‖x‖2 = xTx is the square of the Euclidean norm. Derive an explicit
algebraic expression for the robustness of correctly declaring a functional system to be
functional.

(b) Repeat part 97a with this info-gap model:

U(h) =
{
c : (c− c̃)T W−1 (c− c̃) ≤ h2

}
, h ≥ 0 (477)

where W is a known, real, symmetric, positive definite matrix. Unlike eq.(476), we will
declare the system “functional” if:

N∑

i=1

ci ≤ ε (478)

Derive an explicit algebraic expression for the robustness of correctly declaring a functional
system to be functional.

(c) The condition of a system is assessed with a measurement, c, which is a random variable.
If the system is “functional” then the pdf of c is:

p1(c) = λe−λc, c ≥ 0 (479)

If the system is “failed” then the pdf of c is:

p2(c) = µe−µ(c−cf ), c ≥ cf (480)

where cf is a known positive value.

Given a measurement, cm, we declare the system “functional” if:

cm ≤ c1 (481)

Likewise, we declare the system “failed” if:

cm ≥ c2 (482)

Assume that c1 > cf .

Derive an explicit algebraic expression for the probability of declaring a functional system
to be functional. Derive an explicit algebraic expression for the probability of declaring a
failed system to be functional.
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(d) The condition of a system is specified by the value of c. When the system is functional:

c = 3.7 (483)

When the system is failed:
c 6= 3.7 (484)

Measurement of c is corrupted by random normal noise with zero mean and unknown
variance. A random sample of c values of size N = 5 is taken. The state of the system
is constant throughout the sampling. The sample mean and sample variance are x = 3.2,
and s2 = 0.5. Select a statistical test to determine if the system is functional or failed.
Briefly explain your selection. Do you reject the hypothesis that the system is functional at
the 0.02 level of significance?

(e) Repeat part 97d with a single difference. Instead of eq.(484) we have:
When the system is failed:

c < 3.7 (485)

Do you reject the hypothesis that the system is functional at the 0.02 level of significance?
(f) Repeat part 97d with a single difference. Instead of eq.(484) we have:

When the system is failed:
c > 3.7 (486)

Do you reject the hypothesis that the system is functional at the 0.02 level of significance?
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98. Fire suppression (based on exam in 035018, 7.10.2018), (p.330). You are responsible for
allocating fire-suppression units for managing a major fire raging at N distinct locations. The
area, A, in which fire has been extinguished t hours after initiation of response, is:

A(a, f) = t
N∑

i=1

aifi = t aT f (487)

where fi is the number of units allocated to location i and ai is a coefficient expressing the
relative ease with which location i is controlled. a and f are vectors of the corresponding
quantities ai and fi. You must choose the vector f , where the coefficients a are uncertain. Your
goal is to extinguish the fire in an area, A, no less than Ac within a specified duration t.

(a) The uncertainty in the coefficients a is expressed by this fractional-error info-gap model:

U(h) =
{
a :

∣∣∣∣
ai − ãi
wi

∣∣∣∣ ≤ h, i = 1, . . . , N

}
, h ≥ 0 (488)

where ãi and wi are known positive constants. Derive an explicit algebraic expression for
the robustness function.

(b) Continue part 98a and compare two alternative allocations of fire-fighting units, denoted f
and f ′, where:

ãT f > ãT f ′,
ãT f

wT f
<
ãT f ′

wT f ′
(489)

The left hand relation asserts that allocation f is predicted to achieve control of a greater
area than allocation f ′. However, predictions have zero robustness to uncertainty, and
the righthand relation asserts that allocation f has greater relative error than allocation f ′.
Using the robustness function from part 98a, derive an explicit algebraic expression for the
range of critical values, Ac, for which allocation f is robust-preferred over allocation f ′.

(c) Repeat part 98a with this info-gap model:

U(h) =
{
a : (a− ã)TW−1(a− ã) ≤ h2

}
, h ≥ 0 (490)

where W is a known, real, symmetric, positive definite matrix and ã is the vector of esti-
mated coefficients.

(d) Let θ denote the time it takes to extinguish a fire. For naturally occurring fires, the proba-
bility density function (pdf) of θ is:

p(θ) =





θ1

θ2
if θ ≥ θ1

0 else
(491)

where θ1 is a known positive constant.

Let θ2 be a duration greater than θ1. Derive an explicit algebraic expression for the proba-
bility that the time required to extinguish a fire will exceed θ2.

(e) Continuing part 98d, suppose a specific fire was extinguished after time θ2 = 100θ1. Can
you confidently assert that this was a naturally occurring fire? Explain briefly.

(f) We now extend and modify part 98d. The pdf in eq.(491) is an estimate, which we denote
p̃(θ). The true pdf, p(θ), is unknown. The uncertainty in the estimate is represented with
this info-gap model:

U(h) =
{
p(θ) : p(θ) ≥ 0,

∫ ∞

0
p(θ)dθ = 1, |p(θ)− p̃(θ)| ≤ hp̃(θ)

}
, h ≥ 0 (492)
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Let θ2 be a duration greater than θ1. Let P (θ ≥ θ2|p) denote the probability that the time
required to extinguish a fire exceeds the value θ2, based on the pdf p(θ). We don’t know
the function p(θ), so we will estimate P (θ ≥ θ2|p) as P (θ ≥ θ2|p̃). We require that this
estimate not err more than ε. That is, we require:

|P (θ ≥ θ2|p)− P (θ ≥ θ2|p̃)| ≤ ε (493)

Derive an explicit algebraic expression for the robustness function of this uncertain esti-
mate. Assume that θ2 is much much greater than θ1.

(g) The average duration of naturally-occurring forest fires in a specific region is 30 hours.
The mean and variance of a normally distributed random sample of 6 fires from that region
are x = 33 hours and s2 = 3 hours2, respectively. Choose a statistical test to test the
hypothesis that this is a sample of naturally-occurring forest fires. Do you accept or reject
this hypothesis at 0.05 level of significance? Explain.
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99. Elastic deflection with uncertain stiffness (based on exam in 036057, 15.1.2019), (p.332).

Background: The force-displacement relation of a linear elastic system is described by F = kx.
The estimated value of the stiffness coefficient is k̃, but this is uncertain. We explore some
design implications.

(a) Uncertainty in k is specified by the following fractional-error info-gap model:

U(h) =
{
k : k ≥ 0,

∣∣∣∣∣
k − k̃

w

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (494)

wherew is a known positive constant. We will apply a positive force, F , and we require that
the resulting deflection be no less than the critical value xc. Derive an explicit algebraic
expression for the robustness.

(b) Now suppose that k is a random variable. We will apply a positive force F , and require that
the resulting displacement be no less than the critical value xc. The probability of failing to
achieve this requirement is:

Pf(F, xc) =
1

1 + (F/F0)
, F ≥ 0 (495)

where F0 is estimated as F̃ 0, which is positive, but F0 is uncertain. The uncertainty in F0

is represented by the following fractional-error info-gap model:

U(h) =
{
F0 : F0 > 0,

∣∣∣∣∣
F0 − F̃ 0

F̃ 0

∣∣∣∣∣ ≤ h

}
, h ≥ 0 (496)

We require that the probability of failure be no greater than Pc. Derive an explicit algebraic
expression for the robustness.

(c) We now extend the problem to a vector of forces, F T = (F1, . . . , FN ) applied to an elastic
system. The deflection at a specific location is:

x =
N∑

i=1

ciFi (497)

where the vector of flexibility coefficients, ci, is uncertain according to this ellipsoid-bound
info-gap model:

U(h) =
{
c : (c− c̃)T W (c− c̃) ≤ h2

}
, h ≥ 0 (498)

where c̃ is a known vector and W is a known, positive definite, symmetric, real matrix. We
require that the deflection be no less than the critical value xc. Derive an explicit algebraic
expression for the robustness.

(d) Return to part 99c but now consider opportuneness rather than robustness. We aspire (but
do not require) that the deflection be at least as large as xw. Derive an explicit algebraic
expression for the opportuneness function.


