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Problem Set on Acceptance Tests

List of problems:
1. Sampling until the first failure, page 1 (p.7).
2. Fixed sample size, page 1 (p.8).
3. Test for equivalent performance, page 2 (p.9).
4. Run-time faults or programming errors? page 2 (p.10).
5. Milled surface, page 2.
6. Thermal expansion, page 3.
7. Vibration amplitude, page 3.
8. Dispute about the mean, page 3.
9. Robustness of the significance level, with info-gap-uncertain pdf, page 3 (p.13).
10. Robustness of the t test to distributional uncertainty, page 4 (p.13).
11. Maximum likelihood estimation, p.4 (p.14).
12. Accelerated lifetime testing: simple case, p.4 (p.16).
13. Single hypothesis test, p.5 (p.18).

1. Sampling until the first failure (p.7). We will sample a very large population of items and test
each item for integrity. Each item will either pass (P) or fail (F). We will stop sampling when
the first F occurs.

(a) What is the probability distribution of the sample size? What is the average and standard
deviation of the sample size if the fraction of F’s in the population is p = 0.01?

(b) We have sampled N = 215 items without finding an F. Test the null hypothesis:

H0 : p = 0.01 (1)

against the alternative hypothesis:

H1 : p < 0.01 (2)

(c) What is the smallest sample size at which we reject H0 in eq.(1) at a 0.025 level of
confidence, if no F has yet been obtained?

(d) In a different batch the first F occurred at N = 70 items. Test the null hypothesis:

H0 : p = 0.01 (3)

against the alternative hypothesis:

H1 : p > 0.01 (4)

Repeat this test if the first failure occurs at N = 10, and again at N = 2. What do you
conclude from this?

2. Fixed sample size. (p.8) We will sample N items from a very large population, where each
item either passes (P) or fails (F). The value of N is chosen before we begin. The probability
of an F is denoted p, but its value is unknown.
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(a) What is the probability distribution of the number of F’s among the N tests?

(b) If we observem F’s among theN tests then our estimate of p would bem/N . Specifically,
if we had observed 1 F among theN tests our estimate of p would be p1 = 1/N . However,
suppose that we observe no F’s among the N tests. We now wish to choose between
the following two hypotheses:

H0 : p = p1 (5)

H1 : p < p1 (6)

(c) Suppose that p truly equals zero: F’s do not and cannot occur. How many tests would
be needed to demonstrate this? What is the implication, more generally, when testing for
very small p?

3. Test for equivalent performance. The performance of a system is evaluated as ‘Low’, ‘Mod-
erate’ or ‘High’. The performances of two versions of this system are summarized in table 1.
Do these two systems have equivalent performance?

Version Low Moderate High Total
I 160 140 40 340
II 40 60 60 160

Totals 200 200 100 500

Table 1: Data for problem 3.

4. Run-time faults or programming errors? A large computer program has been run repeat-
edly with different input streams. Inputs occur from many different sources and at various
different times during operation. Run-time faults can arise either from input errors or from
programming errors. In the former case we expect a Poisson distribution in time of run-time
faults. In the latter case we expect fairly consistent and recurrent run-time faults, though not
completely so since some inputs may not activate some programming faults.

13 runs completed without any run-time faults; 13 runs incurred a single fault; 4 runs incurred
two faults each, and 2 runs had 3 faults. These data are summarized in table 2.

# of faults/run 0 1 2 3
# of runs 13 13 4 2 Total = 32
# of faults 0 13 8 6 Total = 27

Table 2: Data for problem 4.

With what confidence do you accept or reject the contention that the faults arose from input
errors? (Hint: Estimate the coefficient of the Poisson distribution from the data, which removes
an additional degree of freedom.)

5. Milled surface. The thickness of a milled surface is assessed as the deviation above a refer-
ence level. This deviation is measured in microns using a profilometer. In a particular sample
the deviation was measured 8 times at a single point, with the following results: 12.30, 12.37,
12.37, 11.79, 12.17, 11.86, 12.31, 11.99. The desired deviation above the reference level is
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11.90 microns. Assuming that the measurement errors are normally distributed, is this milled
surface acceptably smooth?

6. Thermal expansion. The coefficient of thermal expansion of two welded metals must match,
in order to prevent cracking during thermal cycling. The expansion coefficients are mea-
sured for random samples of the two metals, with the following results, in units of 10−6/C
(strain/degree C):

Metal 1: 21, 24, 22, 23, 25, 22

Metal 2: 24, 23, 22, 25, 25, 24, 25, 23

Would you recommend welding these two metals for a thermal-cycling application? (Assume
normal distribution of errors.)

7. Vibration amplitude. The amplitude of vibration in a milling machine increases as the tool
bit wears out. An automatic monitoring system detects increased vibration in order to warn
the operator of tool bit wear. Vibration levels in the milling machine are automatically catego-
rized by the monitoring system as ‘low’, ‘moderate’ or ‘high’. The vibration level is sampled
periodically. During normal use of a sharp new bit, the fraction of ‘low’, ‘moderate’ and ‘high’
vibrations are p1 = 0.85, p2 = 0.10 and p3 = 0.05, respectively.

Of the past 100 samples, 72 samples are at the ‘low’ vibration level, 17 are ‘moderate’ and 11
samples are ‘high’. Should the operator change the tool bit?

8. Dispute about the mean. One person claims that the random variable x is uniformly dis-
tributed on the interval [0, 1]. Another person claims that x has an average greater than 1/2. A
large random sample of size N = 50 has been made, and the sample mean is x = 0.53. Con-
struct and implement a statistical hypothesis test to test the first person’s claim as opposed to
the second person’s claim.

9. Robustness of the significance level, with info-gap-uncertain pdf. (p.13) Consider a test
between two hypotheses, based on a sample of size n. Under hypothesisH0 the sample mean
is thought to be normally distributed with known mean and variance, µ0 and σ2/n. Under H1

the distribution of the sample mean is shifted to the right by a known positive quantity, δ. We
wish to distinguish between the hypotheses:

H0 : µ = µ0 (7)

H1 : µ = µ0 + δ (8)

While the actual distribution under H1 is known to be the distribution under H0 shifted by δ, the
actual shape of the distribution in both cases is uncertain. Let f̃(x) denote the best estimate of
the pdf of the sample mean under H0, which is N (µ0, σ

2/n). An info-gap model for uncertainty
in the actual distribution under H0 is:

U(h, f̃) =

{
f(x) : f(x) ≥ 0,

∫ ∞

−∞
f(x) dx = 1, |f(x)− f̃(x)| ≤ hf̃(x), ∀x

}
, h ≥ 0 (9)

The critical value, C, is the rejection threshold: reject H0 if and only if x > C. The significance
level, given pdf f(x), is the probability of falsely rejecting H0:

SL(f) = Prob(x > C|H0) (10)

=

∫ ∞

C
f(x) dx (11)
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The robustness of the test, for significance level α, is the greatest horizon of uncertainty in the
pdf, up to which the significance level does not exceed α. Derive an explicit expression for the
robustness, for small α.

10. Robustness of the t test to distributional uncertainty. (p.13) Use matlab program du03.m1

to explore several properties of the robustnesses to distributional uncertainty for type I and
type II errors when using a t test.

(a) The robustnesses to distributional uncertainty for type I and type II errors are ĥ0(t, α?, α)

and ĥ1(t, α?, β). Explore how these robustnesses vary with variation of the number of degrees
of freedom of the t test. Explain your results intuitively.

(b) Level of significance, α, and power, 1 − β, trade off against each other. For instance,
for an ordinary t test with 17 DoFs, levels of significance of 0.01, 0.03 and 0.05 have asso-
ciated powers of 0.15, 0.31 and 0.41, respectively. Explore this trade-off at different levels of
robustness. Specifically, when:

ĥ0(t, α?, α) = ĥ1(t, α?, β) = constant (12)

what are the values for α and 1− β for α? = 0.01, 0.03 and 0.05?

11. Maximum likelihood estimate. (p.14). Given a random sample, x = (x1, . . . , xn), what is
the maximum likelihood estimate of the parameter λ for each of the following distributions:

(a) Uniform distribution:

p(x) =

{ 1
λ , if 0 ≤ x ≤ λ
0, else

(13)

(b) Triangular distribution:

p(x) =

{ −2x
λ2

+ 2
λ , if 0 ≤ x ≤ λ

0, else
(14)

(c) Exponential distribution:
p(x) = λe−λx, x ≥ 0 (15)

12. Accelerated lifetime testing: simple case,2 p.4 (p.16). The lifetime of a device is denoted
`, which depends on the “stress”, s, which the system is subject to: `(s). We know that the
lifetime is zero for any stress exceeding the value s0. Also, it is believed that the lifetime-stress
relation is roughly linear for lower stress:

`m(s, c) =

{
(s− s0)c if s ≤ s0

0 if s ≥ s0

(16)

where c < 0.

We have measured the lifetime, `(s1), at stress s1 < s0. We wish to estimate the lifetime at
lower stress s2 < s1. Consider the following specific case. s0 = 1, s1 = 0.8, `(s1) = 10 and
s2 = 0.4.

1\papers\T-Test\du03.m
2See Lecture Notes on Acceptance Testing, section 10 (acctes.tex).
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(a) Use the known lifetimes to evaluate the coefficient ĉ in eq.(16) and to predict the lifetime at
stress s2.

(b) Our understanding indicates that the lifetime at low stress s2 will be longer than the lifetime
which is predicted based on the measurement at stress s1. However, we do not know how
much longer. Using the estimated coefficient ĉ, calculate the robustness to lifetime uncertainty
at critical errors 0, 0.2, 0.35 and 0.65. Discuss the meaning of these results.

(c) Now consider a more negative coefficient (steeper slope) c = 1.01ĉ. What is the lifetime
prediction with this value of c? Calculate the robustness for this c at the critical errors 0, 0.2,
0.35 and 0.65. Discuss the meaning of these results.

(d) Now consider an even more negative coefficient (steeper slope) c = 1.02ĉ. What is the
lifetime prediction with this value of c? Calculate the robustness for this c at the critical errors
0, 0.2, 0.35 and 0.65. Discuss the meaning of these results.

13. Single hypothesis test, p.5 (p.18). A particular property, x, (e.g. height, temperature,
longevity, etc.) of a healthy population is a random variable with known mean and variance µ
and σ2. The central limit theorem asserts that, regardless of the distribution of x, the mean, x,
of a large random sample of size N is normally distributed with mean µ and variance σ2/N .
Given an observed value of the sample mean, xobs, we want to test the hypothesis that the
population is healthy:

H0 : x ∼ N (µ, σ2/N) (17)

We will reject H0 if xobs is an implausible value, conditioned on H0. Specifically, we reject H0

if, conditioned on H0:

Prob

(∣∣∣∣∣
x− µ
σ/
√
N

∣∣∣∣∣ >
∣∣∣∣∣
xobs − µ
σ/
√
N

∣∣∣∣∣ ; H0

)
≤ α (18)

where α is a ‘level of significance’. If H0 holds and if the sample is statistically random, then
the distribution of x−µ

σ/
√
N

would be standard normal, N (0, 1). Let Φ(z) denote the cumulative
probability distribution (CPD) for N (0, 1). The problem is that we are unsure that the sample
is truly random: statistically independent measurements from the same population. Thus we
are unsure that the true distribution of x−µ

σ/
√
N

, call it F (·), is actually Φ(·). We represent this
uncertainty with the following info-gap model in which we introduce a simplifying assumption
that the distributions are symmetric around the origin:

U(h) =

{
F (z) : F (−∞) = 0, F (∞) = 1, F (z) = 1− F (−z), dF

dz
≥ 0, |F (z)− Φ(z)| ≤ h

}
, h ≥ 0

(19)
(a) We have an observed value of the sample mean, xobs. Suppose that eq.(18) holds based

on this observation, implying that we should reject H0. How much can the distribution of
x−µ
σ/
√
N

deviate from N (0, 1) without changing this decision? That is, derive the robustness
as a function of the rejection threshold, α.

(b) In contrast to part 13a, suppose that we have observed a sample mean, xobs, for which
eq.(18) does not hold, implying that we should accept H0. Derive the robustness as a
function of the rejection threshold, α.
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Solutions to Homework on Acceptance Tests

List of problem solutions:
1. Sampling until the first failure, page 7.
2. Fixed sample size, page 1.
3. Test for equivalent performance, page 9.
4. Run-time faults or programming errors? page 10.
5. Milled surface, page 11.
6. Thermal expansion, page 12.
7. Vibration amplitude, page 12.
8. Dispute about the mean, page 13.
9. Robustness of the significance level, with info-gap-uncertain pdf, page 13 (p.3).
10. Robustness of the t test to distributional uncertainty, page 13 (p.4).
11. Maximum likelihood estimation, p.14 (p.4).
12. Accelerated lifetime testing: simple case, p.16 (p.4).
13. Single hypothesis test, p.18 (p.5).
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Solution to problem 1.
1a x = number of samples to the first failure, and has a geometric distribution, where p is the

probability of an F:
f(x) = (1− p)x−1p, x = 1, 2, . . . (20)

Check normalization:
∞∑

x=1

f(x) = p
∞∑

x=1

(1− p)x−1 = p
∞∑

x=0

(1− p)x = p
1

1− (1− p) = 1 (21)

The mean and variance of x are:

E(x) =
1

p
, var(x) =

1− p
p2

(22)

So:
E(x) =

1

p
=

1

0.01
= 100 (23)

√
var(x) =

√
1− p
p2
≈ 1

p
= 100 (24)

1b Our observation is x = N = 215 samples without observing an “F”. A large x is evidence
against H0. The level of significance is the probability of an equally or more extreme result (impugn-
ing H0) conditioned on H0. Hence the level of significance is:

α = Pr[x ≥ N |H0] =
∞∑

x=N

f(x) = p
∞∑

x=N

(1− p)x−1 = p(1− p)N−1
∞∑

x=0

(1− p)x

︸ ︷︷ ︸
1

1−(1−p)= 1
p

= (1− p)N−1 (25)

Under H0: p = 0.01 so α = (0.99)N−1 = (0.99)214 = 0.116. This is not small so we do not (yet) reject
H0.
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1c We require α = (0.99)N−1 = 0.025 hence:

N = 1 +
ln 0.025

ln 0.99
= 368.04 (26)

So, at N = 369 we reject H0 at α = 0.025 level of significance.
1d The first F occurred at item N = 70. A small x impugns H0. (This is the reverse of part 1b

because H1 in eq.(4) is the reverse of H1 in eq.(2).) Hence the level of significance is:

α = Pr[x ≤ N |H0] =
N∑

x=1

f(x) = p
N∑

x=1

(1− p)x−1 = p
(1− p)N − 1

(1− p)− 1
= 1− (1− p)N (27)

Under H0: p = 0.01 so α = 1− (0.99)N = 1− (0.99)70 = 0.505. This is not small so we do not reject
H0.

Repeat this with the first F at N = 10, and we find that the level of significance is α = 1 −
(0.99)N = 1− (0.99)10 = 0.0956. This is not small so we still do not reject H0.

Repeat this with the first F atN = 2, and we find that the level of significance is α = 1−(0.99)N =

1− (0.99)2 = 0.0199. This is small (but certainly not tiny) so we reject H0.
The general conclusion is that it is “difficult” to reject H0. The “problem” is that the standard

deviation is nearly equal to the mean, as seen in eqs.(23) and (24).
Solution to problem 2.

2a The probability of exactly m F’s among N tests is the binomial distribution:

f(m|N) =

(
N
m

)
pm(1− p)N−m (28)

where the binomial coefficient is: (
N
m

)
=

N !

m!(N −m)!
(29)

The mean and variance of the binomial distribution are:

E(m) = Np, var(m) = Np(1− p) (30)

Thus, for small p, we see:
√

var(m)

E(m)
=

√
Np(1− p)
Np

=

√
(1− p)
Np

≈ 1√
Np

(31)

For instance, this ratio equals 1 for N = 100 and p = 0.01. In other words, the binomial distribution
tends to be wide.

2b The level of significance, α, is the probability of an equally or more extreme result than
observed (less than or equal to 0). A small value of α impugns H0. Thus, with p1 = 1/N :

α = Pr(x = 0|H0) = f(0|N) =

(
N
0

)
p0

1(1− p1)N =

(
1− 1

N

)N
(32)

See results in table 3. The confidence converges very slowly (and is not even monotonic at very
large N ) as the sample size rises.

2c If you are looking for something that isn’t there, you will never find it. And even if p is positive
but very very tiny, you are very very unlikely to ever find an F. The implication is that estimating
p based on fitness tests is infeasible when p is tiny. The best one can hope for is to establish
confidence that p is no greater than a specified value. We explored this in problem 1d. We saw that
this also is often inconclusive. If p is very small then fitness testing should probably be augmented
with (or replaced by) other methods of system analysis. For example, attempting to identify possible
failure mechanisms, and verifying their rarity.
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N α

2 0.25
5 0.3277
10 0.3487
20 0.3585
30 0.3617
50 0.3642

100 0.3666
103 0.3677
106 0.3679
1015 0.3682

∞ 1

Table 3: Levels of significance, eq.(32).

Solution to problem 3. The systems are equivalent if the rows and columns of the data, table 1, are
statistically independent. We will use the χ2 test to test this hypothesis.

c = number of columns = 3.
r = number of rows = 2.
pij = probability of an outcome in row i and column j. We can estimate this probability as:

pij =
nij
N

(33)

where nij = number of outcomes in row i and column j.
p•i = probability of an outcome in column i.
pj• = probability of an outcome in row j.
The hypothesis of statistical independence of rows and columns is:

H0 : pij = pi•p•j (34)

The alternative hypothesis is:
H1 : H0 is false (35)

p•1 =
200

500
= 0.4, p•2 =

200

500
= 0.4, p•3 =

100

500
= 0.2, p1• =

340

500
= 0.68, p2• =

160

500
= 0.32

(36)

χ2 =
c∑

i=1

r∑

j=1

(nij −Np•ipj•)2

Np•ipj•
= 49.63 (37)

DOF = number of categories − number of constraints:

DOF = (r − 1)(c− 1) = 2 (38)

χ2
2,0.005 = 10.6 =⇒ Pr

(
χ2

2 ≥ 10.6
)

= 0.005 =⇒ Pr
(
χ2

2 ≥ 49.63
)
� 0.005 (39)

So we strongly reject H0, with level of confidence greater than 1− 0.005.
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Solution to problem 4. We must test the following hypotheses:
H0: Faults are due to input errors.
H1: Faults are due to programming errors.

These hypotheses are roughly equivalent to:
H0: The number of faults per run is a Poisson random variable.
H1: The number of faults per run is not a Poisson random variable.

If H0 is true, then n, the number of faults per run, will be distributed as:

Pn =
e−λλn

n!
(40)

where λ = average number of faults per run.
We do not know λ but we can estimate it from the data:

λ =
27

32
≈ 0.84 (41)

We can test H0 against H1 with a χ2 test.
We have four categories:

Faults per run Probability conditioned on H0

0 P0 = e−λ = 0.432

1 P1 = λe−λ = 0.363

2 P2 = λ2e−λ

2! = 0.152

3 or more
∑∞
n=3 Pn = 0.053

Table 4: Categories for χ2 test for problem 4.

DOF = number of categories - number of constraints:

4− 2 = 2 (42)

1 constraint: normalization. 1 constraint: estimate of λ.
Define:
nk = number of runs with k faults.
N = total number of runs.
Pk = probability of run with k faults.
So we calculate the χ2 statistic as:

χ2 =
4∑

k=1

(nk −NPk)2

NPk
= 0.422 (43)

The level of significance in our test is α = probability of a more extreme result, conditioned upon
H0:

α = Pr
(
χ2

2 ≥ χ2
obs|H0

)
(44)

= Pr
(
χ2

2 ≥ 0.422|H0

)
(45)

> 0.5 (46)

This is not small, so we cannot reject H0.
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Solution to problem 5. Use the t statistic to test between the following two hypotheses:

H0 : x = 11.90 (47)

H1 : x 6= 11.90 (48)

The data result in:
N = 8, x = 12.145, s2 = 0.054943, s = 0.23440 (49)

Thus the t statistic, conditioned on H0, is:

t =
x− 11.90

s/
√

8
∼ t(7) (50)

The observed value of the statistic is:

to =
12.145− 11.90

0.2344/
√

8
= 2.956 (51)

If to is “greatly different” from zero, then reject H0. We use the level of confidence to evaluate the
degree of deviation of to from zero:

α = Pr
(
|t| ≥ |to|

∣∣∣H0

)
(52)

= 2×
[
Pr
(
t(7) ≥ 2.956

)]
(53)

= 2× (1− 0.99) = 0.02 (54)

This is small so we reject H0.
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Solution to problem 6. Use the t test to compare two means. The null- and alternative hypotheses are:

H0 : µ1 = µ2 (55)

H1 : µ1 6= µ2 (56)

The basic results are:

Metal 1: N1 = 6 x1 = 22.833 s2
1 = 2.1666 s1 = 1.47194

Metal 2: N2 = 8 x2 = 23.875 s2
2 = 1.2679 s2 = 1.1260

Define:
∆ = x1 − x2 (57)

for which the observed value is:
∆o = −1.042 (58)

Under hypothesis Ho:

E(∆) = 0, var(∆) = var(x1) + var(x2) ≈ s2
1

N1
+
s2

2

N2
= σ2

∆ = 0.5196 (59)

Thus σ∆ = 0.7208.
Since the errors have a normal distribution we conclude, under H0, that:

∆ ∼ t(N1+N2−2) (60)

A large value of |∆| is evidence against H0. The level of significance is:

α = Pr
(
|∆| ≥ |∆o|

∣∣∣∣H0

)
(61)

= Pr
( |∆|
σ∆
≥ |∆o|

σ∆

∣∣∣∣H0

)
(62)

≈ 2× 0.08 = 0.16 (63)

α is not small so we do not reject H0.
Solution to problem 7. Use the χ2 test with K = 3 categories. In normal operation the probabilities of

outcomes in each of the three categories are:

po1 = 0.85, po2 = 0.10, po3 = 0.05 (64)

We wish to test between the following hypotheses:

H0 : pi = poi , i = 1, . . . , 3 (65)

H1 : H0 is false (66)

The χ2 statistic is:

χ2 =
K∑

i=1

(Ni −Npoi )2

Npoi
(67)

where Ni is the number of outcomes in category i and N is the total number of outcomes. This
statistic is distributed as χ2

(3−1) if H0 holds.
The observed statistic is:

χ2
o = 14.08 (68)

The level of significance is:

α = Pr(χ2
(2) ≥ χ2

o

∣∣∣H0) = Pr(χ2
(2) ≥ 14.08) ≤ 1− 0.999 = 0.001 (69)

This is very small so we reject H0 and change the tool bit.
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Solution to problem 8. The two hypotheses are:

H0 x ∼ U [0, 1] (70)

H1 E(x) > 1/2 (71)

Under H0 the mean and variance of x are 1/2 and 1/12. Since the sample is large, the central
limit theorem implies that, under H0, x ∼ N (1

2 ,
1/12
N ). Thus the level of significance is:

α = Prob(x ≥ xo|H0) (72)

= Prob

(
x− µx
σx

≥ xo − µx
σx

∣∣∣∣∣H0

)
(73)

= 1− Φ

(
xo − µx
σx

)
(74)

= 1− Φ

(
0.53− 0.5

1/
√

12× 50

)
= 1− Φ(0.735) = 1− 0.7673 = 0.2327 (75)

This is not large so we cannot reject H0.
Solution to problem 9. (p.3) The robustness is the greatest horizon of uncertainty up to which all pdf’s

result in significance level no less than α:

ĥ(α) = max

{
h :

(
max

f∈U(h,f̃)

SL(f)

)
≤ α

}
(76)

Let M(h) denote the inner maximum in eq.(76). For small significance level, α � 1, this maximum
occurs when the upper tail is as fat as possible at horizon of uncertainty h:

f(x) = (1 + h)f̃(x) (77)

Thus:
M(h) = (1 + h)

∫ ∞

C
f̃(x)dx (78)

The robustness is the greatest value of h for which:

M(h) = α (79)

Let α̃ denote the best estimate of the significance level:

α̃ =

∫ ∞

C
f̃(x)dx (80)

Combining eqs.(78)–(80) we find the robustness to be:

ĥ(α) =
α

α̃
− 1 (81)

or zero if this expression is negative. Note:
• The robustness depends on the sample size via α̃, which depends on the sample size via

the estimated distribution f̃ .
• The robustness is zero for the estimated significance, α̃.
• The robustness is positive for the significance greater (lower confidence) than α̃.

Solution to problem 10. (p.4)
(a) The robustnesses to distributional uncertainty for type I and type II errors are ĥ0(t, α?, α) and

ĥ1(t, α?, β). The t test is constructed with the nominal pdfs for level of significance α?. ĥ0(t, α?, α)



hwacc.tex PROBLEM SET ON ACCEPTANCE TESTS 14

DoF α? = 0.01 α? = 0.03 α? = 0.05
α for 1− β for α for 1− β for α for 1− β for
ĥ0 = 0.04 ĥ1 = 0.2 ĥ0 = 0.04 ĥ1 = 0.2 ĥ0 = 0.04 ĥ1 = 0.2

5 0.1210 0 0.1273 0.0674 0.1411 0.1510
17 0.1004 0.0480 0.1117 0.1608 0.1274 0.2392
50 0.0956 0.0752 0.1080 0.1884 0.1240 0.2627

Table 5: Results for problem 10(a).

is the greatest horizon of uncertainty up to which the probability of falsely rejecting H0 is no greater
than α. ĥ1(t, α?, β) is the greatest horizon of uncertainty up to which the probability of falsely ac-
cepting H0 is no greater than β. The “power” is defined as 1 − β, the probability of falsely rejecting
H1.

Table 5 shows values α for which ĥ0(t, α?, α) = 0.04, and values of 1− β for which ĥ1(t, α?, β) =

0.2, for various degrees of freedom and various values of α?. From this table we observe the
following two facts:

1. At fixed α? (the nominal level of significance), ĥ0(t, α?, α) reaches robustness of 0.04 at lower
α (more significant rejection) as the DoF increases. This means that the robustness increases
as the DoF increases.

2. At fixed α? (the nominal level of significance), ĥ1(t, α?, β) reaches robustness of 0.2 at larger
1− β (greater power) as the DoF increases. This means that the robustness increases as the
DoF increases.

(b) We seek the values of α and 1− β at which:

ĥ0(t, α?, α) = ĥ1(t, α?, β) = 0, 0.04, and 0.08 (82)

ĥ0 = ĥ1 α?= 0.01 0.03 0.05 α?= 0.01 0.03 0.05
0 α = 0.0100 0.0300 0.0500 1− β = 0.1505 0.3066 0.4068

0.04 0.1004 0.1117 0.1274 0.1172 0.2646 0.3605
0.08 0.1789 0.1828 0.1942 0.0946 0.2333 0.3248

Table 6: Results for problem 10(b).

Results are shown in table 6 for 17 DoFs. We observe:

1. Robust level of significance (α) trades-off against robust power (1 − β) at all levels of robust-
ness.

2. The trade-off is less severe at high robustness than at low robustness. For instance, at ro-
bustness of 0.04, the level of significance deteriorates less than at robustness of zero, for
approximately the same relative improvement in power.

Solution to problem 11. (p.4). Define s(x) = 1 if x ≥ 0 and zero otherwise.
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(a) The likelihood function is the product of pdf’s:

L(x|λ) =
n∏

i=1

p(xi) =
n∏

i=1

1

λ
s(λ− xi)s(xi) (83)

=
1

λn
if xi ∈ [0, λ] ∀ i (84)

and zero otherwise.
Thus the MLE is:

λ̂ = max
i
xi (85)

The MLE is not defined if there is a negative measurement, which simply refutes this pdf.
(b) The likelihood function is the product of pdf’s:

L(x|λ) =
n∏

i=1

p(xi) =
n∏

i=1

(
−2xi
λ2

+
2

λ

)
s(λ− xi)s(xi) (86)

∂L

∂λ
=

2

λ2

n∏

i=1

(
2xi
λ
− 1

)
s(λ− xi)s(xi) (87)

Thus the MLE is for λ to equal 2xi for some measurement i. Also, we require λ ≥ maxi xi. This
allows several possible solutions. Consider the 2nd derivative:

∂2L

∂λ2
=

4

λ3

n∏

i=1

(
−3xi
λ

+ 1

)
s(λ− xi)s(xi) (88)

For a maximum we require that an odd number of terms be negative.
The MLE is not defined if there is a negative measurement, which simply refutes this pdf.
For instance:
Suppose n = 1 where 0 ≤ x1. Then λ = 2x1 implies L′ = 0 and L′′ < 0. So this is the MLE.
Suppose n = 2 where 0 ≤ x1 ≤ x2, where −3x1

2x2
+ 1 > 0. Then λ = 2x2 implies L′ = 0 and

L′′ < 0. So this is the MLE.
Suppose n = 2 where 0 ≤ x1 ≤ x2, where −3x1

2x2
+ 1 < 0. Then λ = 2x2 implies L′ = 0 and

L′′ > 0. So this is not the MLE.
(c) The likelihood function is the product of pdf’s:

L(x|λ) =
n∏

i=1

p(xi) = λn
n∏

i=1

e−λxis(xi) = λne−λX
n∏

i=1

s(xi) (89)

where X =
∑n
i=1 xi.

∂L

∂λ
= λn−1e−λX(n− λX)

n∏

i=1

s(xi) (90)

Thus the MLE is:
λ̂ =

n

X
(91)

The MLE is not defined if there is a negative measurement, which simply refutes this pdf.
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Solution to problem 12. (p.4).
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Figure 1: Robustness curves
for problem 12.

(a) Given the data, we estimate c:

ĉ =
`(s1)

s1 − s0
=

10

0.8− 1
= −50 (92)

Thus the lifetime prediction is:

`(s2) = (s2 − s0)ĉ = (0.4− 1)(−50) = 30 (93)

(b) We know that the robustness curve for the estimated slope is a straight line at 45o:

ĥ(ĉ, Ec) = Ec (94)

Thus the robustness based on ĉ is shown in the 2nd column of table 7

Ec ĥ(ĉ,Ec) ĥ(1.01ĉ, Ec) ĥ(1.02ĉ, Ec)

0 0 0 0
0.2 0.2 0 0
0.35 0.35 0.64 0
0.65 0.65 0.94 1.2

Table 7: Data for problem 3.

(c) The lifetime prediction with c = 1.01ĉ = −50.5 is:

`(s2) = (s2 − s0)c = (0.4− 1)(−50.5) = 30.3 (95)

A 1% increase in predicted lifetime.
To calculate the robustness we use:

ĥ(c, Ec) =





0 if Ec ≤ √µ1
√
E2

c − [`(s1)− `m(s1, c)]2 − `m(s2, ĉ) + `m(s2, c) else
(96)

where:

µ1 = [`(s1)− `m(s1, c)]
2 + [`m(s2, ĉ)− `m(s2, c)]

2 (97)
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We find
√
µ1 = 0.32, which is the value at which the robustness curve lifts off the Ec axis. Thus

ĥ(c, 0) = ĥ(c, 0.2) = 0 while ĥ(c, 0.35) and ĥ(c, 0.65) will be positive:

ĥ(c, 0.35) =
√

0.352 − [10− 10.1]2 − 30.0 + 30.3 = 0.635 (98)

ĥ(c, 0.65) =
√

0.652 − [10− 10.1]2 − 30.0 + 30.3 = 0.942 (99)

See column 3 of table 7.
(d) The lifetime prediction with c = 1.02ĉ = −51 is:

`(s2) = (s2 − s0)c = (0.4− 1)(−51) = 30.6 (100)

A 2% increase in predicted lifetime.
We find

√
µ1 = 0.63, which is the value at which the robustness curve lifts off the Ec axis. Thus

ĥ(c, 0) = ĥ(c, 0.2) = ĥ(c, 0.35) = 0 while ĥ(c, 0.65) will be positive:

ĥ(c, 0.65) =
√

0.652 − [10− 10.2]2 − 30.0 + 30.6 = 1.22 (101)

See column 4 of table 7.
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Solution to problem 13. (p.5).
(13a) Define the random variable z = x−µ

σ/
√
N

and denote its CPD as F (z). Let Prej(F ) denote

the probability of rejection in eq.(18) on p.5. Define zobs = xobs−µ
σ/
√
N

. Thus:

Prej(F ) = Prob(|z| ≥ |zobs|) = F (−|zobs|) + [1− F (|zobs|)] (102)

= 2[1− F (|zobs|)] (103)

where eq.(103) exploits the symmetry around the origin of the CPD’s in the info-gap model.
The definition of the robustness is:

ĥ1(α) = max

{
h :

(
max
F∈U(h)

2[1− F (|zobs|)]
)
≤ α

}
(104)

Let m(h) denote the inner maximum, which occurs when F (|zobs|) is as small as possible at horizon
of uncertainty h:

F (|zobs|) = max

[
1

2
, Φ(|zobs|)− h

]
(105)

where the ‘12 ’ comes from the symmetry of the CPD’s in the info-gap model. Thus, for h ≤ Φ(|zobs|)−
1
2 :

m(h) = 2 [1− Φ(|zobs|) + h] ≤ α =⇒ ĥ1(α) =
α− 2[1− Φ(|zobs|)]

2
(106)

or zero if this is negative.3 Note that, for all 0 ≤ α ≤ 1, ĥ does not exceed Φ(|zobs|)− 1
2 so we need

not evaluate m(h) for larger values of h.
The robustness curve in eq.(106) is plotted in fig. 2 for the following parameter values: µ = 1,

σ = 1.3 and N = 30. The observed sample mean is xobs = 1.5 for which zobs = 2.1066 and
Φ(|zobs|) = 0.9824.
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Figure 2: Robustness curve for
problem 13a.

Figure 3: Robustness curve
for problem 13b.

(13b) In analogy to eq.(104), the definition of the robustness is:

ĥ2(α) = max

{
h :

(
min

F∈U(h)
2[1− F (|zobs|)]

)
≥ α

}
(107)

Let m(h) denote the inner minimum, which occurs when F (|zobs|) is as large as possible at horizon
of uncertainty h:

F (|zobs|) = min [1, Φ(|zobs|) + h] (108)
3Use matlab program \lectures\reltest\prob12.m to calculate robustness curves for both parts 13a and 13b
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Thus, for h ≤ 1− Φ(|zobs|):

m(h) = 2 [1− Φ(|zobs|)− h] ≥ α =⇒ ĥ2(α) =
2[1− Φ(|zobs|)]− α

2
(109)

or zero if this is negative. Note that, for all 0 ≤ α ≤ 1, ĥ does not exceed 1 − Φ(|zobs|) so we need
not evaluate m(h) for larger values of h.

The robustness curve in eq.(109) is plotted in fig. 2 for the following parameter values: µ = 1,
σ = 1.3 and N = 30. The observed sample mean is xobs = 1.05 for which zobs = 0.2107 and
Φ(|zobs|) = 0.5834.


