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Abstract

The diagnosis of diabetes, based on measured fasting plasma glucose level, depends on choosing
a threshold level for which the probability of failing to detect disease (missed diagnosis), as well as
the probability of falsely diagnosing disease (false alarm), are both small. The Bayesian risk provides
a tool for aggregating and evaluating the risks of missed diagnosis and false alarm. However, the
underlying probability distributions are uncertain, which makes the choice of the decision threshold
difficult. We discuss an hypothesis for choosing the threshold that can robustly achieve acceptable
risk. Our analysis is based on info-gap decision theory, which is a non-probabilistic methodology for
modelling and managing uncertainty. Our hypothesis is that the non-probabilistic method of info-gap
robust decision making is able to select decision thresholds according to their probability of success.
This hypothesis is motivated by the relationship between info-gap robustness and the probability of
success, which has been observed in other disciplines (biology and economics). If true, it provides
a valuable clinical tool, enabling the clinician to make reliable diagnostic decisions in the absence
of extensive probabilistic information. Specifically, the hypothesis asserts that the physician is able
to choose a diagnostic threshold that maximizes the probability of acceptably small Bayesian risk,
without requiring accurate knowledge of the underlying probability distributions. The actual value
of the Bayesian risk remains uncertain.
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1 Introduction

Diagnosis and treatment is a complex interaction of subjective information and impressions, objec-
tive data, patient needs and preferences, and resource constraints. The integration of quantitative
information into clinical decisions often relies on thresholds or intervals (which are pairs of thresh-
olds.) For example, “normal limits” generally refers to the interval in which a parameter value for a
healthy population falls. Above or below these limits is the region of abnormality. The quantitative
diagnostic question becomes: is the patient above or below a threshold? Prior to this question comes
the query: what value of threshold should trigger a response? Decision thresholds are difficult to
set because of diverse and complicated uncertainties. In this paper we explore this difficulty, and we
propose an hypothesis based on the idea of satisficing as it is quantified in info-gap decision theory
(1). The hypothesis, if true, provides a tool for the responsible and successful management of this
uncertainty in choosing decision thresholds. We illustrate the hypothesis with the case of diagnosing
diabetes.

Thresholds are often based on clinical trials with populations which may not reliably reflect the
target population to which the individual patient belongs. Both patient and physician are sometimes
quite uncertain about the relevance of the clinical trials to their specific case. Greenfield et al (2) note
that randomized controlled trials, which underlie clinical guidelines and decision thresholds, typically
enroll patients with less severe disease and exclude older patients, making the resulting thresholds
of uncertain applicability to the excluded populations. Feinstein and Horwitz (3) warn against the
prevalence of randomized clinical trials in which “the data do not include many types of treatments
or patients seen in clinical practice”. Morimoto et al (4) note that clinical guidelines, developed
in the U.S. for use of aspirin in primary prevention of cardiovascular events, need modification
before application in Japan. McLaughlin (5) reports the conclusions of a roundtable discussion
of implications of heterogeneity of treatment effects (HTE). He concludes that, due to HTE, and
especially in the absence of “sound data”, “care has to be individualized, using the clinician’s best
judgment regarding available treatment options.” Glasziou et al (6) explain that “There is generally
a weak signal–noise ratio in cholesterol level monitoring. The signal of a small increase in cholesterol
level will be difficult to detect against the background of a short-term variability”. The problem
is two-fold: first, the statistical variability itself, and second, the difficulty in characterizing this
variability which can change over time and be quite idiosyncratic. This second problem is in the
presumed probability distribution, which may be poorly known. The distribution may be estimated
from a limited sample, so it may include substantial estimation errors. Furthermore, as detailed
above, the target population may differ from the sample population.

We now consider the difficulty of choosing a threshold value for a single variable, which may be
a specific measured quantity or a combination (e.g. regression) of several measurements.

If we confidently knew the values of the measured variable under normal and abnormal conditions,
and their statistical variations, then we could reliably choose a threshold value for triggering an
intervention. Specifically, we could seek a threshold for which the Bayesian risk—which combines
the probabilities of false alarm and missed detection—is minimal. However, as discussed earlier, we
usually do not have accurate knowledge of the variable used for diagnosis. Furthermore, past values
only partially indicate future values because the patient’s condition evolves.

We face a gap between what we do know about the patient and what we need to know in order
to reliably choose a threshold. This information gap motivates the choice of a threshold which yields
adequate Bayesian risk even if our best understanding errs substantially. Instead of minimizing our
best estimate of the Bayesian risk, we seek a threshold for which the Bayesian risk is acceptable
under the widest possible range of error in our knowledge about the patient. This strategy is called
robust-satisficing : to be robust to information-gaps while also satisfying critical requirements (which
is Simon’s (7) definition of ‘satisficing’).

The hypothesis of this paper is that this robust-satisficing strategy can be used to choose a
decision threshold for reliably achieving acceptably small Bayesian risk. Info-gap robust-satisficing
is based on non-probabilistic models of the uncertainties underlying the evaluation of the Bayesian
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risk. Nonetheless, robust-satisficing acts as a proxy for the unknown probabilities and thus is able to
select the threshold with higher probability of success. The acutal value of the Bayesian risk remains
uncertain. If this hypothesis is true, then the physician can make reliable diagnostic decisions in the
absence of extensive probabilistic information.

In section 2 we illustrate our hypothesis and the resulting strategy for diagnosis of diabetes. In
section 3 we formalize and discuss the hypothesis.

2 Diagnosing Diabetes

The robust-satisficing choice of a decision threshold hinges on evaluating the robustness to uncer-
tainty. The robustness is a quantitative answer to the question: how wrong can our models and
data be, and the threshold will still yield acceptable outcomes. It is our hypothesis that acceptable
outcomes are most reliably obtained by using the info-gap robust-satisficing strategy (1).

We formulate this hypothesis in the context of an example: choosing the decision threshold for
diagnosing diabetes based on measuring the fasting plasma glucose (FPG) concentration. This will
facilitate a precise formulation of our hypothesis in section 3.

2.1 Threshold Decision

Let x denote the measured FPG level. We will diagnose the patient as diabetic if and only if x
exceeds a threshold, θ:

x ≥ θ (1)

Estimated means and standard deviations for FPG are given by de Vegt et al (1998), based
on American Diabetic Association criteria, as 5.4 ± 0.5 (mmol/l) for the healthy individual, and
9.6 ± 3.3 for the diabetic. 5% of the population are diabetic, so the prior probabilities of health
and disease are taken as πh = 0.95 and πd = 0.05. The relevance of these population estimates, for
any individual patient, are subject to substantial uncertainty as discussed earlier: the individual,
due to idiosyncracies of personal history, present medical condition, and genetics, may belong to a
sub-population which is not well represented by the population which was used to estimate these
means and variances, as discussed in section 1.

2.2 Probabilities and Bayesian Risk

We will consider normal distributions of the measured indicator, FPG, with uncertain mean and
variance. Let Z(x, µ, σ) denote the normal cumulative distribution function with mean µ and variance
σ2.

Let µh and σh denote mean and standard deviation for the healthy state, with estimated values
µ̃h and σ̃h. Let εµh

and εσh
denote errors of these estimates. Analogous quantities for the diseased

state are µd, σd, µ̃d, σ̃d, εµd
and εσd

. In our numerical example we have µ̃h < µ̃d.
A false alarm occurs when a healthy patient is mis-diagnosed as being diseased. A missed detec-

tion occurs when a diseased patient is diagnosed as healthy.
The total probabilities of false alarm and missed detection are:

Pfa(θ, µh, σh) = [1− Z(θ, µh, σh)]πh (2)

Pmd(θ, µd, σd) = Z(θ, µd, σd)πd (3)

The Bayesian risk is a weighted average of these two probabilities:

R(θ) = λPfa(θ, µh, σh) + (1− λ)Pmd(θ, µd, σd) (4)

where λ is between 0 and 1, chosen by the analyst to express the relative importance of missed
detection and false alarm. R(θ) is the average probability of false diagnosis, which we refer to as
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the Bayesian risk. The diagnostic procedure—which depends on the decision threshold θ and on the
population moments—is successful if the Bayesian risk is small.

The choice of the value of λ entails a difficult value judgment of the relative importance of false
alarm and missed detection. On the one hand, false alarm can result in unneeded and perhaps costly
or harmful medical intervention. On the other hand, missed detection can result in severe medical
consequences due to lack of treatment. It is well known that these two considerations trade-off, one
against the other. Furthermore, examination of eqs.(2)–(4) shows that it is important to consider
the quantities λπh and (1 − λ)πd, since in many situations (like the diagnosis of diabetes), πh and
πd differ greatly in magnitude. In our subsequent example we use λ = 0.025, which results in a
factor-of-two emphasis on missed detection over false alarm: [(1− λ)πd]/(λπh) = 2.05.

2.3 Info-Gap Models of Uncertainty

We know estimated means and standard deviations for healthy and diseased states, µ̃h, σ̃h, µ̃d and
σ̃d. However, we are uncertain of the pertinence of these data to the sub-population to which a
specific individual patient belongs. More precisely, the fractional-error between each estimated value
and the true value for the sub-population of that patient is unknown. We will use the following non-
probabilistic fractional-error info-gap models to represent this uncertainty in the means and standard
deviations of the estimated distributions:

Uh(α) = {µh, σh : |µh − µ̃h| ≤ εµh
α, |σh − σ̃h| ≤ εσh

α, σh ≥ 0} , α ≥ 0 (5)

Ud(α) = {µd, σd : |µd − µ̃d| ≤ εµd
α, |σd − σ̃d| ≤ εσd

α, σd ≥ 0} , α ≥ 0 (6)

Uh(α) is an unbounded family of nested sets of µh and σh values. In the absence of uncertainty,
when α = 0, the set contains only the estimated values. As the horizon of uncertainty, α, increases,
the set becomes more inclusive. Uh(α) is a non-probabilistic representation of the uncertainty in the
moments of the healthy distribution. Analogous statements are true for Ud(α) as well, regarding the
diseased distribution.

2.4 Info-Gap Robustness

The robustness of threshold value θ is the greatest horizon of uncertainty, α, at which the Bayesian
risk, R(θ), does not exceed a specified critical level, Rc. The robustness function is a quantitative
answer to this question: by how much can the estimated moments of the probability distributions
err, and the Bayesian risk will not exceed Rc? The robustness is denoted α̂(θ,Rc), and is defined in
eq.(10) of the appendix.

The robustness depends on the estimated moments of the measurement x, and on the decision
threshold θ. Since more robustness is better than less robustness, we can use the robustness function
to choose between different values of the threshold, θ.

2.5 Numerical Example

Fig. 1 shows robustness curves for three different choices of the decision threshold θ, evaluated as
described in the appendix. We will discuss three central features of these curves.

Trade-off between robustness and risk. The positive slope of the curves shows that increased
robustness against uncertainty in the estimated moments can be obtained only by accepting greater
Bayesian risk. Requiring lower risk entails accepting lower immunity against uncertainty. This
trade-off is an unavoidable mathematical property of all robustness curves.

Zero robustness of the estimated risk. It is a mathematical theorem that each robustness
curve reaches the horizontal axis—where the robustness equal zero—precisely at the estimated value
of the Bayesian risk. When we use our estimates of the healthy and diseased moments to evaluate
the Bayesian risk in eq.(4), we obtain a particular value for each value of θ; call this value of the
estimated risk R̃(θ). If we adopt this value of risk as the critical value, Rc = R̃(θ), then we find
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Figure 1: α̂(θ,Rc) vs. Rc for 3 θ’s: 6 (solid), 7
(dash) and 8 (dot). µ̃h = 5.4, σ̃h = 0.5, εµh

=
0.1µ̃h, εσh

= 0.1σ̃h. µ̃d = 9.6, σ̃d = 3.3, εµd
=

0.2µ̃d, εσd
= 0.2σ̃d. λ = 0.025.

the robustness precisely equals zero: α̂(θ,Rc) = 0. This means that we cannot rely on attaining the
estimated value of the Bayesian risk: the robustness of the estimate of that risk is zero.

In light of the trade-off between risk and robustness, we conclude that we can reliably attain only
those values of risk which exceed the estimated risk. The robustness curve provides an assessment of
the enhanced confidence—robustness to uncertainty—obtained in exchange for greater Bayesian risk.
This holds for any decision threshold θ. Changing the threshold may reduce the estimated Bayesian
risk, R̃(θ), but the robustness for achieving that reduced risk will still be zero. In short, in evaluating
the performance of any proposed decision threshold, θ, we must “migrate up” the robustness curve
for that threshold, seeking a point whose robustness is adequately large and whose risk is adequately
small.

Robustness curves can cross one another. We see in fig. 1 that the robustness curves cross
each other. In particular, the curves the θ = 6 and θ = 7 cross one another quite near the horizontal
axis. The estimated robustnesses for these thresholds are R̃(6) = 0.0094 and R̃(7) = 0.0105. That is,
the average Bayesian risk is 94 in 10,000 for the smaller threshold, and 105 in 10,000 for the larger
threshold. Based on these estimated risks one would prefer the smaller threshold, θ = 6.

We know, however, that the robustness to uncertainty for achieving either of these low risks is
zero; only larger risks have positive robustness. As we “migrate up” the robustness curve for θ = 6
we cross below the robustness curve for θ = 7. This intersection occurs at risk R× = 0.0130 and at
robustness α̂× = 0.23. For any Bayesian risk in excess of 130 in 10,000, the larger threshold (θ = 7)
is more robust to uncertainty than the smaller threshold (θ = 6). Furthermore, the robustness at
the intersection is quite low in light of how the info-gap model has been implemented (details in the
caption to fig. 1). Robustness of 0.23 implies that the diseased mean or standard deviation can err by
as much as 0.23× 0.2 µ̃d or 0.23× 0.2 σ̃d, but no more, in order to assure that the Bayesian risk does
not exceed 0.0130. A tolerable error of 4.6% of the mean or standard deviation is quite small. The
healthy mean or standard deviation can err by no more than 0.23× 0.1 µ̃h or 0.23× 0.1 σ̃h; tolerable
error of only 2.3% in each moment. If the analyst judges that the moments could reasonably err
more than these margins, then one would prefer θ = 7 over θ = 6.

It is useful also to consider the level of Bayesian risk which can be guaranteed at large robustness.
For instance, at α̂ = 1.5, we see from fig. 1 that threshold θ = 6 can guarantee a Bayesian risk of
0.0375; that is, an average probability of false diagnosis of 375 per 10,000. In contrast, threshold
θ = 7 can guarantee a Bayesian risk of 0.0287; substantially better than the lower threshold.

Finally, let us note that the crossing of robustness curves for different thresholds implies that the
robust-satisficing decision may differ from the decision which is optimal based on the estimated risk.
Specifically, these decisions will differ if the analyst needs robustness greater than the value at which
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the curves cross, α̂×, and can accept risk greater than the crossing value, R×.

3 The Robust-Satisficing Hypothesis

3.1 What Is the Hypothesis?

The Bayesian risk is the average probability of false diagnosis, either missed detection or false alarm,
defined in eq.(4). The physician and patient aspire to achieve small Bayesian risk, but this is difficult
since the moments of the statistical distributions are uncertain. Our hypothesis is that the robustness
function (which can be calculated without probabilistic information about the uncertain entities) can
be used to reliably choose the decision threshold to assure acceptably small Bayesian risk. That is,
a non-probabilistic strategy is able to select between threshold values according to their probability
of success. We will not know the actual value of the Bayesian risk, but we will be able to maximize
the probability that the Bayesian risk is acceptably small.

We have explained in section 2.5 how the robustness curves are used to select between alternative
values of the decision threshold, by assessing the enhanced confidence—robustness to uncertainty—
obtained in exchange for greater Bayesian risk. But robustness is not necessarily the same as likeli-
hood of success. Nonetheless our hypothesis asserts that robustness is indeed a proxy for probability:

Greater robustness corresponds to greater probability of not exceeding the specified value
of Bayesian risk.

Let us make this hypothesis perfectly clear, in order to understand why its truth is not simply a
matter of definition.

Consider two different decision thresholds, θ1 and θ2. Suppose that θ1 is more robust to uncer-
tainty for guaranteeing Bayesian risk no larger than Rc:

α̂(θ1, Rc) > α̂(θ2, Rc) (7)

What is the probability that the Bayesian risk will in fact be no greater than Rc, if we choose threshold
θ1 or θ2? That is, what is the probability that:

R(θi) ≤ Rc (8)

We have argued that eq.(7) implies that we should prefer threshold θ1 over θ2 because θ1 is more
robust to uncertainty. But is θ1 actually more likely than θ2 to achieve Bayesian risk below Rc? We
are unable to answer this question, since the uncertainty we are concerned with is uncertainty in
the statistical moments of the distribution of FPG in health and disease. (R(θi) depends on these
moments; see eq.(4).) We do not know the probability distribution of these moments, so we cannot
calculate the probability that the Bayesian risk will not exceed the value Rc.

Our hypothesis is that robustness is a proxy for probability. Namely, we hypothesize that eq.(7)
implies that θ2 is more likely than θ1 to result in Bayesian risk less than Rc:

Prob[R(θ1) ≤ Rc] > Prob[R(θ2) ≤ Rc] (9)

That is, we hypothesize that eq.(7) implies eq.(9). This is a risky hypothesis because the robustness
function, α̂(θ,Rc) has no probabilistic information behind it. The info-gap models on which it is
based are much less informative than probability models.

3.2 Testing the Hypothesis

One can test the hypothesis by repeatedly estimating the Bayesian risk based on observed rates of
missed detection and false alarm. To do this, consider two thresholds, θ1 and θ2, whose robustnesses
are ranked as in eq.(7). Use these thresholds for diagnosing diabetes in separate populations, and
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calculate the Bayesian risk for each population based on the observed rates of false alarm and missed
detection. The hypothesis is rejected if and only if the observed frequency with which θ1 satisfies
eq.(8) is less than the observed frequency with which θ2 satisfies eq.(8).

The hypothesis could be falsified for either or both of two reasons. First, the info-gap models,
eqs.(5) and (6), could be wrong. For instance, we have assumed that the distributions are in fact
normal and only the moments are info-gap-uncertain; the distributions may be non-normal on their
tails. Error in the info-gap models would result in erroneous robustness curves which could cause
erroneous ordering in eq.(7).

Second, the hypothesis could fail if robustness is not a proxy for probability of success. That is,
failure could result if eq.(7) does not imply eq.(9).

3.3 Why Is the Hypothesis Plausible?

The info-gap models of uncertainty which underlie our example, eqs.(5) and (6), assume two things:
(i) that the cumulative distribution functions (cdf’s) are normal (gaussian) and (ii) that the estimated
moments deviate fractionally by an unknown amount. The assumption of normality is reasonable if
the population to which the patient belongs is statistically homogeneous and large enough for the
central limit theorem to assure normality.

The assumption of unbounded fractional-error assumes that we know estimated values of the
moments, and errors of these estimates. However, these errors do not constitute worst cases and we
don’t know the extent to which the measured population actually represents the population to which
our patient belongs. This info-gap model imposes a very weak type of order on the uncertainty. It
treats the estimated moments as “best guesses” around which increasingly different possible values
evolve as the horizon of uncertainty rises. The actual horizon of uncertainty is unknown, though there
is an assumption of gradualness or continuity in the uncertain deviation of our patient’s population
from the measured population. The continuity between cause (health or disease) and effect (the
corresponding cdf) underlies inference and decision in info-gap theory as well as in probability theory
(9).

In addition to the plausibility of the very weak assumption of unbounded fractional error, we will
cite two examples in which this assumption has proven useful. These two examples also suggest that
the hypothesis that robustness is a proxy for probability may be true.

Carmel and Ben-Haim (10) study foraging behavior of animals from a very wide range of taxa.
They show that a robust-satisficing foraging strategy, based on a fractional-error info-gap model,
seems to be more consistent with field and laboratory observation than strategies based on maximizing
the energy intake. This makes sense since, though an animal needs energy in order to survive,
maximal intake is not necessary; a sub-maximal critical amount of energy will suffice. If robust-
satisficing is prevalent in nature, as suggested by the study, then robust-satisficing should have a
survival advantage over other strategies. This survival advantage is that robust-satisficing is more
likely to achieve at least the critical energy intake than other strategies. This is contingent on the
realism of the fractional-error info-gap model, and on robustness being a proxy for the probability of
success, as suggested by that study.

Our second example concerns the equity premium puzzle in financial economics. Risky assets
like stocks have higher average returns than risk-free assets like government bonds. This “equity
premium” of risky assets is generally understood as necessary to attract investors. The puzzle is that
standard economic models do not explain the size of the equity premium (11, 12). These standard
models assume that investors attempt to maximize their returns. However, an investment can be
justified if its return exceeds that of alternatives, even if not maximal. Like foraging animals, investors
do not need to maximize profits in order to survive; it is sufficient to beat the competition. In fact,
a robust-satisficing model of investment behavior, based on a fractional-error info-gap model, seems
to explain the equity premium puzzle (1, section 11.4). The apparent prevalence of robust-satisficing
among investors suggests that robust-satisficing has survival value in economic competition: robust-
satisficing is more likely than other strategies to yield competitive returns. This is contingent on the
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validity of the underlying fractional-error info-gap model, and on the robustness being a proxy for
probability of success.

3.4 Why Is the Hypothesis Medically Important?

The hypothesis of this paper, if true, has an important practical implication for clinical medical
practice, as explained in this sub-section.

A physician making a differential diagnosis and a patient working to understand the risks and
benefits of a therapeutic plan, are both dealing with severe uncertainty. At present their option is
to understand the population based literature and try to understand how their problem fits in the
context of a trial or observation. The only thing that they know for certain about the model that
they choose as a reference is that the model is incorrect. It is incorrect because the person about
whom the decision is to be made was not a part of that study or trial. Thus, he or she is compelled
to make a decision by estimating how much he or she is actually like the population for which data
are available.

Conventionally, physicians and patients alike seek to optimize. They ask the question, “what can
I do for myself (or my patient) that will assure the most favorable outcome?” This formulation, as
we have shown, although attractive on the surface, is highly info-gap uncertain. This means that the
person making the decision may have little confidence that the chosen outcome will actually occur. In
the context of false positives and false negatives, a satisficing approach does not attempt to optimize
the set of diagnostic inclusions, because doing so requires exhaustively exploiting data which are
suspect of error. Rather, the robust-satisficing hypothesis, if true, provides maximal confidence that
the diagnostic threshold satisfactorily includes illness and excludes those without illness.

It is important to note that there are many cases, perhaps even most cases, where the robust
satisficing approach and the optimizing approach yield the same decision threshold. In this case,
the user can have an enhanced confidence that the threshold values chosen are indeed correct. In
the cases where the optimizing and robust satisficing approach differ, there is a graphic and useful
display of the decision trade-offs that must be made to increase confidence. If the premium to pay
for increasing confidence is too high, the user may still elect the optimizing approach. However this
is done with eyes wide open, knowing that confidence in the outcome will decrease.

Robust satisficing in the design of diagnostic thresholds adds a valuable dimension to disease
classification and acknowledges the enormous variation in disease expression, the heterogeneity of
the population, and the uncertainties underlying every medical interaction.

4 References

1. Ben-Haim Y, 2006, Info-Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edi-
tion, Academic Press, London.

2. Greenfield S, Kravitz R, Duan N, Kaplan SH. Heterogeneity of treatment effects: Implications
for guidelines, payment, and quality assessment. Am. J. Med. 2007;120:S3–S9.

3. Feinstein AR, Horwitz RI. Problems in the “evidence” of “evidence-based medicine”. Am. J.
Med. 1997;103:529–535.

4. Morimoto T, Fukui T, Lee TH, Matsui K. Application of U.S. guidelines in other countries: As-
pirin for the primary prevention of cardiovascular events in Japan. Am. J. Med. 2004;117:459–
468.

5. McLaughlin MJ, for the members of the HTE Policy Roundtable Panel. Healthcare policy
implications of heterogeneity of treatment effects. Am. J. Med. 2007;120:S32–S35.

6. Glasziou PP, Irwig L, Heritier S, Simes RJ, and Tonkin A, for the LIPID Study Investigators,
Monitoring cholesterol levels: Measurement error or true change? Annals of Internal Medicine,
2008;148:656–661.

7. Simon, HA, A Behavioral Model of Rational Choice, Quarterly Journal of Economics, 1955;69:174–
183.

8



8. de Vegt F, Dekker JM, Stehouwer CDA, Nijpels G, Bouter LM and Heine RJ, The 1997
American Diabetes Association criteria versus the 1985 World Health Organization criteria for
the diagnosis of abnormal glucose tolerance, Diabetes Care, 1998;21:1686–1690.

9. Ben-Haim, Y, Set-models of information-gap uncertainty: Axioms and an inference scheme,
Journal of the Franklin Institute, 1999;336:1093–1117.

10. Carmel Y. and Ben-Haim, Y, 2005, Info-gap robust-satisficing model of foraging behavior: Do
foragers optimize or satisfice?, American Naturalist, 166: 633–641.

11. Mehra, R. and Prescott, E.C., 1985, The equity premium: A puzzle, Journal of Monetary
Economics, 15: 145–161.

12. Kocherlakota, N.R., 1996, The equity premium: It’s still a puzzle, Journal of Economic Liter-
ature, 34: 42–71.

A Evaluation of the Robustness

The robustness function is defined as:

α̂(θ,Rc) = max

 α :

 max
µd,σd∈Ud(α)

µh,σh∈Uh(α)

R(θ)

 ≤ Rc

 (10)

We will evaluate the robustness function by evaluating its inverse.
Let us denote the inner maximum in eq.(10) by m(α). The robustness, α̂(θ,Rc), is the greatest

value of α at which m(α) ≤ Rc. Note that m(α) increases monotonically as α increases due to the
nesting of the info-gap model. Thus the robustness is the greatest α satisfying m(α) = Rc. In other
words, m(α) is the inverse of α̂(θ,Rc) .

To evaluate m(α) let us define two new functions:

md(α) = max
µd,σd∈Ud(α)

Pmd(θ, µd, σd) (11)

mh(α) = max
µh,σh∈Uh(α)

Pfa(θ, µh, σh) (12)

From eq.(4) we see that:
m(α) = λmh(α) + (1− λ)md(α) (13)

One can readily find expressions for mh(α) and md(α). One finds:

md(α) =

{
Z(θ, µ̃d − εµd

α, σ̃d + εσd
α)πd θ ≤ µ̃d − εµd

α

Z(θ, µ̃d − εµd
α, r[σ̃d − εσd

α])πd θ > µ̃d − εµd
α

(14)

where we have defined the ramp function r(x) = x when x ≥ 0, and r(x) = 0 otherwise. Note that
md(α) = 1/2 when θ = µ̃d − εµd

α. Thus md(α) is continuous but not necessarily smooth as eq.(14)
moves from the top to the bottom line.

mh(α) is:

mh(α) =

{
[1− Z(θ, µ̃h + εµh

α, r[σ̃h − εσh
α])]πh θ ≤ µ̃h + εµh

α

[1− Z(θ, µ̃h + εµh
α, σ̃h + εσh

α)]πh θ > µ̃h + εµh
α

(15)

Caption to fig. 1: α̂(θ,Rc) vs. Rc for 3 θ’s: 6 (solid), 7 (dash) and 8 (dot). µ̃h = 5.4, σ̃h = 0.5,
εµh

= 0.1µ̃h, εσh
= 0.1σ̃h. µ̃d = 9.6, σ̃d = 3.3, εµd

= 0.2µ̃d, εσd
= 0.2σ̃d. λ = 0.025.
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