Uncertainty

and the **End of Science**

Yakov Ben-Haim

Technion

Israel Institute of Technology

 $^{^0 {\}rm lectures \ lib\ eos 01.tex} \quad 13.2.2013$

Contents

1	Highlights (eos01.tex)	3
2	The End of Science?	4
3	Quantum Indeterminism	49

- § Uncertainty and the end of science
- § Info-gaps and quantum indeterminism

2 The End of Science?

^{0\}lectures\talks\lib\end-of-science01.tex 30.4.2013

§ Science:

• Search for and study of patterns and laws in the natural and physical worlds.

§ Science:

- Search for and study of patterns and laws
- in the natural and physical worlds.
- Could that search end?

§ Science:

- Search for and study of patterns and laws in the natural and physical worlds.
- Could that search end?
- § Several possibilities.

- § Science: discovering Nature's secrets.
 - Extent of Nature's secrets is unknown.
 - \circ How many unknown biological species?
 - \circ How many elementary particles?

- Extent of Nature's secrets is unknown.
 - \circ How many unknown biological species?
 - How many elementary particles?
- Inventory of unknowns: Finite? Nearly empty? Doesn't look like it.

- § Science: discovering Nature's secrets.
 - Extent of Nature's secrets is unknown.
 - \circ How many unknown biological species?
 - How many elementary particles?
 - **Inventory** of unknowns:

Finite? Nearly empty?

Doesn't look like it.

• Could science end?

Conceivably 'Yes', most probably 'No'.

§ Science: human cognitive enterprize.

- Nature's storehouse never empties out.

- § Science: human cognitive enterprize.
 - Nature's storehouse never empties out.
 - Rate of discovery falls, reaching zero when scientists reach limit of human cognitive ability.

- § Science: human cognitive enterprize.
 - Nature's storehouse never empties out.
 - Rate of discovery falls, reaching zero when scientists reach limit of human cognitive ability.
 - Judging from last 400 years, still great human potential.

- § Science: human cognitive enterprize.
 - Nature's storehouse never empties out.
 - Rate of discovery falls, reaching zero when scientists reach limit of human cognitive ability.
 - Judging from last 400 years, still great human potential.
 - Could science end?

Conceivably 'Yes', most probably 'No'.

§ Science: product of human civilization.End due to historical or social forces.

§ Science: product of human civilization.

- End due to historical or social forces.
 - We blow ourselves to smithereens.
 Smithereens can't do science.

§ Science: product of human civilization.

- End due to historical or social forces.
 - We blow ourselves to smithereens. Smithereens can't do science.
 - Spengler's theory of cyclical history: advanced society decays and disappears.

§ Science: product of human civilization.

- End due to historical or social forces.
 - We blow ourselves to smithereens. Smithereens can't do science.
 - Spengler's theory of cyclical history: advanced society decays and disappears.
- Could science end?

Tentative 'Yes'.

Maybe just interruption.

§ Now we get serious:

Whitehead, Hume, Dirac, Shakespeare.

There exist stable discoverable laws of nature.

There exist stable discoverable laws of nature.

§ Whitehead, 1925:

"Apart from recurrence, knowledge would be impossible; for nothing could be referred to our past experience. ...

There exist stable discoverable laws of nature.

§ Whitehead, 1925:

"Apart from recurrence, knowledge would be impossible; for nothing could be referred to our past experience. Also, apart from some regularity of recurrence, measurement would be impossible."

There exist stable discoverable laws of nature.

§ Whitehead, 1925:

"Apart from recurrence, knowledge would be impossible; for nothing could be referred to our past experience. Also, apart from some regularity of recurrence, measurement would be impossible."

§ Hume, 1748:

• Future regular recurrence is logically and empirically unprovable.

•

There exist stable discoverable laws of nature.

§ Whitehead, 1925:

"Apart from recurrence, knowledge would be impossible; for nothing could be referred to our past experience. Also, apart from some regularity of recurrence, measurement would be impossible."

§ Hume, 1748:

- Future regular recurrence is logically and empirically unprovable.
- Logical:

We can't deduce future patterns from past patterns. Past patterns don't logically constrain the future.

There exist stable discoverable laws of nature.

§ Whitehead, 1925:

"Apart from recurrence, knowledge would be impossible; for nothing could be referred to our past experience. Also, apart from some regularity of recurrence, measurement would be impossible."

§ Hume, 1748:

- Future regular recurrence is logically and empirically unprovable.
- Logical:

We can't deduce future patterns from past patterns. Past patterns don't logically constrain the future.

• Empirical: The future can never be tested: One can never step on the rolled up part of a rug unfurling in front of you. •

§ Science would end if:

• Axiom of Natural Law is wrong. What might this mean?

§ Science would end if:

- Axiom of Natural Law is wrong.
- What might this mean?
- Nature comes unstuck:

Laws start "sliding around", changing.

§ Science would end if:

- Axiom of Natural Law is wrong. What might this mean?
- Nature comes unstuck:

Laws start "sliding around", changing.

- **§ What about Quantum Mechanics?**
 - Polarized photon and crystal (Dirac):
 Events indeterminate (Nature unstuck).
 Ls of N probabilistic.
 - QM finds patterns in indeterminism.

§ Science would end if:

- Axiom of Natural Law is wrong. What might this mean?
- Nature comes unstuck:

Laws start "sliding around", changing.

- **§ What about Quantum Mechanics?**
 - Polarized photon and crystal (Dirac):
 Events indeterminate (Nature unstuck).
 Ls of N probabilistic.
 - QM finds patterns in indeterminism.
 - Science restricted, but not gone:
 - Individual events not explained.
 - QM restricted to ensemble patterns.
 (More on QM later.)

§ Could Nature's indeterminism be lawless? So "out of joint: O, cursed spite" that no law can "set it right"? (Shakespeare)

- § Could Nature's indeterminism be lawless? So "out of joint: O, cursed spite" that no law can "set it right"? (Shakesp.)
- § Conceivably 'Yes':

The Unknown at its most rambunctious.

§ Taking stock:

- LoNs necessary for science to be possible.
- Past success of science: LoNs exist(ed).
- Past doesn't determine the future.

§ How could LoN come unstuck? How does LoN work (today)?

- § How could LoN come unstuck? How does LoN work (today)?
- § Projectile in motion:
 - Progress described scientifically with position, momentum, mass, medium etc.
 - LoN: calculate progress by solving equations with boundary conditions.

- § How could LoN come unstuck? How does LoN work (today)?
- § Projectile in motion:
 - Progress described scientifically with position, momentum, mass, medium etc.
 - LoN: calculate progress by solving equations with boundary conditions.
- § Most LoNs are problem statements:
 - Input: current and past states of system.
 - Ouput: next state.
 - •

- § How could LoN come unstuck? How does LoN work (today)?
- § Projectile in motion:
 - Progress described scientifically with position, momentum, mass, medium etc.
 - LoN: calculate progress by solving equations with boundary conditions.
- § Most LoNs are problem statements:
 - Input: current and past states of system.
 - Ouput: next state.
 - What is law-like about this:
 - \circ The problem is constant over time.
 - Solve same problem repeatedly
 - (or simultaneously with DE).

- § How could LoN come unstuck? How does LoN work (today)?
- § Projectile in motion:
 - Progress described scientifically with position, momentum, mass, medium etc.
 - LoN: calculate progress by solving equations with boundary conditions.
- § Most LoNs are problem statements:
 - Input: current and past states of system.
 - Ouput: next state.
 - What is law-like about this:
 - \circ The problem is constant over time.
 - Solve same problem repeatedly (or simultaneously with DE).
- § Warning: Nature is not a scientist.
 - Nature does not solve problems.
 - Nature just does it.

- § Other LoNs are different.
 - The LoN is a problem statement, but: Soln at each step predicts next state and reformulates the problem.

- § Other LoNs are different.
 - The LoN is a problem statement, but: Soln at each step predicts next state and reformulates the problem.
 - Eg: Free fall in gravitational field:
 o Force depends on position.
 o Force changes with position.
 - Solvable, but more difficult.

§ How Nature becomes lawlessly unstuck.

- Modified 2nd type of LoN:
 - \circ Law modified by the evolving event.
 - \circ No soln can be obtained in finite time.

- § How Nature becomes lawlessly unstuck.
 - Modified 2nd type of LoN:
 - Law modified by the evolving event.
 - \circ No soln can be obtained in finite time.
 - Science ends if all LoNs are like this:
 - No prediction.
 - \circ No trajectory calculation.
 - \circ No explicit problem statement embodying LoN.

- § How Nature becomes lawlessly unstuck.
 - Modified 2nd type of LoN:
 - Law modified by the evolving event.
 - \circ No soln can be obtained in finite time.
 - Science ends if all LoNs are like this:
 - No prediction.
 - No trajectory calculation.
 - No explicit problem statement embodying LoN.
 - Nature continues:
 - Nature doesn't solve problems;
 - Nature just does it.

§ How Nature becomes lawlessly unstuck.

- Modified 2nd type of LoN:
 - Law modified by the evolving event.
 - \circ No soln can be obtained in finite time.
- Science ends if all LoNs are like this:
 - No prediction.
 - No trajectory calculation.
 - \circ No explicit problem statement embodying LoN.
- Nature continues:
 - \circ Nature doesn't solve problems;
 - Nature just does it.
 - \circ The continuation of nature doesn't depend on the continuation of science.

§ How Nature becomes lawlessly unstuck.

- Modified 2nd type of LoN:
 - Law modified by the evolving event.
 - \circ No soln can be obtained in finite time.
- Science ends if all LoNs are like this:
 - \circ No prediction.
 - No trajectory calculation.
 - No explicit problem statement embodying LoN.
- Nature continues:
 - Nature doesn't solve problems;
 - Nature just does it.
 - The continuation of nature doesn't depend on the continuation of science.
- § Science fiction? Maybe, but:
 - Axiom of Natural Law not provable.
 - Hume: past and future.
 - Rug metaphor.

§ Will science become fruitless or boring?

•

§ Will science become fruitless or boring?• Probably not. Science thrives on the Unknown.

§ Will science become fruitless or boring?

- Probably not. Science thrives on the Unknown.
- Search for LoNs thrives even though existence of LoNs unprovable.

§ Will science become fruitless or boring?

- Probably not. Science thrives on the Unknown.
- Search for LoNs thrives even though existence of LoNs unprovable.
- Science thrives because science could end.

3 Quantum Indeterminism

^{0&}lt;sub>lectures</sub>talks\lib\quantum03very-shrt.tex 30.4.2013

§ Polarized Photons on Tourmaline

• Identical photons; different outcomes.

§ Polarized Photons on Tourmaline

• Identical photons; different outcomes.

- What happened to Causality?
- Aren't there Laws of Nature?

§ Classical Physics:

- Natural law: Deterministic.
- Individual events: causal relations.

§ Classical Physics:

- Natural law: Deterministic.
- Individual events: causal relations.
- **§ Standard Interpretation of Quantum Theory:**
 - Natural law: Probabilistic.
 - Individual events: indeterminate.
 - Individual causality: lost.

- § Classical Physics:
 - Natural law: Deterministic.
 - Individual events: causal relations.
- **§ Standard Interpretation of Quantum Theory:**
 - Natural law: Probabilistic.
 - Individual events: indeterminate.
 - Individual causality: lost.
- § Info-Gap Interpretation of Quantum Theory:
 - Natural law: Indeterminate.
 - Individual events causally determined.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.
- § Causality in info-gap strategy:
 - Events are determinate.
 - Laws of Nature: fluctuate indeterminately.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.
- § Causality in info-gap strategy:
 - Events are determinate.
 - Laws of Nature: fluctuate indeterminately.
- § Can laws govern the fluctuation of laws of nature? • Oxymoron?

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.
- § Causality in info-gap strategy:
 - Events are determinate.
 - Laws of Nature: fluctuate indeterminately.
- § Can laws govern the fluctuation of laws of nature?
 - Oxymoron?
 - New type of law of nature? Meta-Law? Hierarchy of laws?

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.
- § Causality in info-gap strategy:
 - Events are determinate.
 - Laws of Nature: fluctuate indeterminately.
- § Can laws govern the fluctuation of laws of nature?
 - Oxymoron?
 - New type of law of nature?
 Meta-Law? Hierarchy of laws?
 - \circ Maybe this is what QM does.

- § Nature's Classical & QM Strategy.
 - Optimize action integral.
 - Depends on Law of Nature.
- § Suppose Law of Nature indeterminate? Classical and QM strategy not feasible.
- § Nature's Info-Gap Strategy.
 - Satisfice action integral.
 - Maximize robustness to uncertain Law.
- § Causality in info-gap strategy:
 - Events are determinate.
 - Laws of Nature: fluctuate indeterminately.
- § Can laws govern the fluctuation of laws of nature?
 - Oxymoron?
 - New type of law of nature?
 Meta-Law? Hierarchy of laws?
 - \circ Maybe this is what QM does.
 - Maybe science is finished.

In Conclusion

Uncertainty:

The freedom to err,

The opportunity to create and discover.