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Abstract

The distinction of risk vs uncertainty as made by Knight has important implications for pol-
icy selection. Assuming the former when the latter is relevant can lead to wrong decisions.
With the aid of a stylized model that describes a bank’s decision on how to allocate loans,
we discuss policy insights for decision making under Knightian uncertainty. We use the info-
gap robust satisficing approach to derive a trade-off between confidence and performance
(analogous to confidence intervals in the Bayesian approach but without assignment of prob-
abilities). We show that this trade off can be interpreted as a cost of robustness. We show
that the robustness analysis can lead to a reversal of policy preference from the putative op-
timum. We then compare this approach to the the min-max method which is the other main
non-probabilistic approach available in the literature. We also consider conceptual proxies
for robustness and demonstrate their use in qualitative analysis of financial architecture and
monetary policy.

\people\demertzis\3rd-paper2015\rupi0ll.tex. 15.7.2016.
1 All views are our own and do not represent those of any of the institutions we are affiliated with.
2yitzhak Moda’i Chair in Technology and Economics, Technion—Israel Institute of Technology, Haifa, 32000
Israel, Tel: 972-4-829-3262. yakov@technion.ac.il
3m.demertzis@gmai|.com, +31 20 5242016, De Nederlandsche Bank, PO Box 98, 1000 AB Amsterdam, The
Netherlands.



Keywords: Uncertainty vs risk, confidence, robustness, satisficing, info-gap

JEL Classification: C02, C18, D81, G10

1 Introduction

The economic circumstances since the start of the crisis in 2007 to the present are charac-
terized by high levels of uncertainty. What do we mean by high uncertainty and what does it
imply for policy design or decision making? High uncertainty can mean one of two things: ei-
ther high stochastic volatility around known (or well estimated) average future outcomes, or at
least partial ignorance about relevant mechanisms and potential outcomes. The first implies
that uncertainty can be probabilistically measured (what Frank Knight called ‘risk’), whereas
the second implies that it cannot (what Knight called ‘true uncertainty’ and is now known as
Knightian uncertainty). We often conflate these two concepts when discussing ‘uncertainty’
in general. However, it is crucial to distinguish between them for three reasons. First, the
relevant methods for decision making depend on which of the two notions of ‘high’ uncertainty
we address. Designing policies under the assumption of probabilistically measurable risk can
lead to serious policy mistakes if the underlying uncertainty is non-probabilistic, Knightian.
Second, one’s measures of confidence differ under risk or Knightian uncertainty. Finally, the
use of contextual understanding is different when dealing with risk or Knightian uncertainty. In
a probabilistic setting contextual understanding can be used, for example, to select an appro-
priate probability distribution. In a Knightian setting contextual understanding can be used to
intuit a trend or to sense a pending change that is not yet manifested in data.
This paper will make the following points:

e When uncertainty is probabilistically measurable risk, it is possible to design policies that
are optimal on average or in some quantile sense. Policy design under risk is based on
first principles as expressed by economic theory. The theory underlies policy choices
that are designed to optimize specified substantive outcomes (e.g. minimize a high
guantile of the inflation, maximize average growth, etc.).

e Under Knightian uncertainty it is not possible to optimize stochastic outcomes because
at least some probabilities are unknown. Furthermore, it is unreliable to attempt to opti-
mize substantive outcomes because the underlying models are poorly known. Instead,
under Knightian uncertainty one aims to prevent bad results from occurring or at least
prepare for them. Building buffers in the financial system, applying unorthodox monetary
policies in the monetary system are policies of this type; they aim to provide intervention
tools to deal with or prevent bad outcomes from arising, irrespective of how likely they
might be.

e A non-probabilistic concept of robustness is used to evaluate the confidence in achiev-
ing an outcome under Knightian uncertainty. We will discuss info-gap robustness and
compare it with the min-max robustness concept. We will illustrate both quantitative and
gualitative implementations of info-gap robustness analysis for policy selection.

Decision making under risk relies on known probability distributions of outcomes. Policy
design becomes a question of identifying the most likely occurrence (or perhaps a quantile
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of the occurrence) given the underlying models, and applying measures that optimize the
outcome. Risks around those most likely occurrences are described probabilistically, and
confidence in one’s actions is best captured with statistical intervals or similar probabilistic
guantities.

However, probabilities are measures of frequencies of events that have happened in the
past, and therefore, in real time we are not necessarily confident that they represent accurate
descriptions of the future. What does this mean for policy making? How can we evaluate con-
fidence in these decisions? In this paper we provide an info-gap approach to decision making
under Knightian uncertainty. With the aid of a simplified bank loan allocation example we will
describe how the decision problem is handled in the presence of Knightian uncertainty. The
info-gap approach will allow the bank to rank different portfolios in a way that it can pick those
that provide satisfactory outcomes for the greatest range of adverse future contingencies. Ro-
bustness provides a measure of confidence.

The paper is organized as follows. Section 2 briefly reviews some literature in the eco-
nomics of Knightian uncertainty. It discusses how policies change as we account for Knightian
uncertainty. Section 3 uses a quantitative simple example of bank loan decisions to illustrate
methodological implications of info-gap theory for decisions under Knightian uncertainty. Sec-
tion 4 compares info-gap and min-max decision methodologies. Section 5 discusses and
illustrates 5 conceptual proxies for robustness and illustrates their use in qualitative policy
analysis. Section 6 concludes.

2 Risk versus uncertainty: Implications for policy making

2.1 Risk versus uncertainty

Frank Knight (1921) distinguished between ‘risk’ (for which probability distributions are known)
and ‘true uncertainty’ (for which probability distributions are not known). Knightian uncertainty
reflects ignorance of underlying processes, functional relationships, strategies or intentions of
relevant actors, future events, inventions, discoveries, surprises and so on. Info-gap models
of uncertainty provide a non-probabilistic quantification of Knightian uncertainty (Ben-Haim,
2006, 2010). An info-gap is the disparity between what you do know and what you need to
know in order to make a reliable or responsible decision. An info-gap is not ignorance per se,
but rather those aspects of one’s Knightian uncertainty that bear on a pending decision and
the quality of its outcome.

Under risk we are confident—at least probabilistically—of the underlying model or com-
bination of models that describe the economy. By contrast, under Knightian uncertainty, the
social planner lacks important knowledge of how the system works. The planner starts with
a number of models that may be relevant, but cannot identify the likelihood with which they
describe the economy. When designing policy under risk, the knowledge of underlying prob-
ability distributions permits the identification of policies that are optimal on average or satisfy
other guantile-optimality requirements. This is not possible under Knightian uncertainty be-
cause one lacks knowledge of the underlying distributions. But if one cannot design policy
based on the principle of outcome-optimality, what other principles can one follow and what
would these policies look like?

Two approaches have been widely used as alternatives to outcome-optimization based on
a reliably known (possibly probabilistic) model: 1) robust control (also called min-max) and 2)
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info-gap. Neither requires knowledge of probabilities. The overarching principle behind these
two approaches is to find policies that are robust to a range of different contingencies.

The literature on robust control relies on identifying and then ameliorating worst outcomes
(Hansen et al. 2006, Sargent and Hansen 2008 and Williams 2007). The planner considers a
family of possible models, without assigning probabilities to their occurrence. Then that model
is identified which, if true, would result in a worse outcome than any other model in the family.
Policy is designed to minimize this maximally bad outcome (hence ‘min-max’ is another name
for this approach). In robust control one does not assess the confidence explicitly. Confidence
manifests itself in the following form: the planner will have maximally ameliorated the worst
that is thought to be possible. The optimization is not of the substantive outcome (growth,
employment, etc.) but rather of ameliorating adversity. In this sense min-max is robust to
uncertainty.

The appeal of min-max is that it provides insurance against the worst anticipated outcome.
However, this technique has also been criticized for two main reasons. First, it may be unnec-
essarily costly to assume that the worst will happen (irrespective of how it is defined). Second,
the worst may be expected to happen rarely and therefore it is an event that planners know
the least about. It is not reliable (and perhaps even irresponsible) to pivot the policy analysis
around an event that is the least known (Sims 2001).

The second approach is called info-gap (Ben-Haim 2006, 2010) and relies on the principle
of robust satisficing.* The principle of satisficing is one in which the planner is not aiming at
best outcomes. Instead of maximizing utility or minimizing worst outcomes, the planner aims
to achieve an outcome that is good enough. For example, the planner tries to assure that
loss is not greater than an acceptable level, or growth is no less than a required level. When
choosing between alternative policies, the robust-satisficing planner will choose the policy that
will satisfy the critical requirement over the greatest spectrum of models.®

Info-gap theory has been used for a wide range of economic and policy planning decisions.
Zare et al. (2010), Kazemi et al. (2014) and Nojavan et al. (2016) study applications to
energy economics. Chisholm and Wintle (2012) study ecosystem service investments, while
Hildebrandt and Knoke (2011) study investment decisions in the forest industry. Ben-Haim et
al. (2013) employ info-gap tools in ecological economics. Yokomizo et al. (2012) apply info-
gap theory to the economics of invasive species. Stranlund and Ben-Haim (2008) use info-gap
robustness to evaluate the economics of environmental regulation. Many further applications
are found at info-gap.com

Min-max and info-gap methods are both designed to deal with Knightian uncertainty, but
they do so in different ways. The min-max approach requires the planner to identify a bounded
range of events and processes that could occur, acknowledging that likelihoods cannot be
ascribed to these contingencies. The min-max approach is to choose the policy for which
the contingency with the worst possible outcome is as benign as possible: ameliorate the
worst case. The info-gap robust-satisficing approach requires the planner to think in terms of
the worst consequence that can be tolerated, and to choose the policy whose outcome is no
worse than this, over the widest possible range of contingencies. Both min-max and info-gap

4The technical meaning of “satisficing” as “to satisfy a critical requirement” was introduced by Herbert Simon
(1955, 1957, 1997).

SSatisficing is a strategy that seems to maximise the probability of survival of foraging animals in adverse
conditions (i.e. uncertainty) Carmel and Ben-Haim 2005. There are circumstances for which this can also be
proven for economic examples (see Ben-Haim and Demertzis, 2008).



require a prior judgment by the planner: identify a worst model or contingency (min-max) or
specify a worst tolerable outcome (info-gap).® However, these prior judgments are different,
and the corresponding policy selections may, or may not, agree.’

2.2 How do policies change as we account for uncertainty?

A vast literature has analyzed how policies designed to handle risk differ from those designed
to handle Knightian uncertainty. In the case of designing policy under risk the most famous
result is that of Brainard in his seminal paper (Brainard 1967) in which he showed that ac-
counting for Bayesian uncertainty, in a specific class of problems, implies that policy will be
more cautious.® In terms of policy changes it therefore means smaller but possibly more per-
sistent steps will be taken, and is known as the ‘Brainard attenuation’ effect. At the limit, as
risk becomes very large, the social planner abandons the use of the instrument and is faced
with policy inaction.® As the social planner is more and more uncertain of the results of policy,
it is used less and less. This result has been very popular with policy makers as it appeals to
their sense of caution when they lack sufficient information or knowledge.®

By contrast, policies derived under the principle of min-max (or robust control), and di-
rected against non-probabilistic uncertainty, tend to be comparatively more aggressive. The
policy steps taken are typically larger in size by comparison to either risk-based policies or
outcome-optimal policies in the absence of uncertainty. The intuition is that under Knightian
uncertainty, and when addressing a worst case, there is little knowledge about the transmis-
sion mechanisms, and it is therefore important to strongly exercise available tools in order to
learn about and manage the economy. It is not surprising that this runs against some policy
makers’ natural inclination to be cautious and avoid introducing volatility.

It is here that info-gap robust satisficing provides a useful operational alternative. At the
heart of the method for dealing with uncertainty lies a fundamental choice: that between ro-
bustness against uncertainty and aspiration for high-value outcomes. As we become more
ambitious in our aspirations, we need to compromise in the degree of confidence that we can
have about achieving these aspirations. Conversely, if we require high confidence in achieving
specified goals, then we need to reduce our ambitions. Info-gap is a method developed with
the specific aim of assessing this trade-off. Confidence is quantified with robustness to uncer-
tainty. The trade-off quantifies the degree of robustness with which one can pursue specified
outcome requirements. Policies therefore are not automatically more or less aggressive. It de-
pends very much on the decision maker’'s preferences. Furthermore, the decision maker can
rank alternative policies: between policies of similar ambitions, those that provide the greater
robustness (greater confidence) are preferred. In section 4 we will compare and contrast the
policy implications of min-max with robust-satisficing.

®We will explain in detail later that usually the policy maker does not have to actually identify a specific value
for the worst acceptable outcome.

"Further discussion of this comparison appears in Ben-Haim, Dacso, Carrasco and Rajan, 2009. See also
section 4 here.

8This is for uncertainty in the coefficients that enter the model multiplicatively, not the residuals that enter the
model additively.

To be fair, this attenuation effect does not hold always but also depends on the cross-correlations of error terms
in the assumed model. It is possible therefore, that the policy is more aggressive than that under no uncertainty
and Brainard did acknowledge that.

10As Blinder (1988, p.12) wrote, there tends to be “a little stodginess at the central bank.”



3 An informative trade-off: Robustness vs performance

In this section we use a highly simplified example to illustrate how a decision maker comes
to informed decisions despite the inability to measure uncertainty. We provide a framework,
based on info-gap theory, that allows us to derive a trade-off between confidence in outcomes
and performance requirements. Decision makers who are ambitious in terms of requiring
high-performance outcomes will have to settle for their choices being appropriate only across
a small range of events or contingencies (i.e. having low robustness). On the other hand, if
the decision maker wants the comfort of knowing that policies chosen will function across a
wide range of contingencies (high robustness), then relatively low performance outcomes will
have to be accepted. We also show that policy prioritization often does not require the choice
of a specific outcome.

Consider a bank that aims to give out loans to potential borrowers. Part of the problem that
it faces is that the premium it requires depends on the risk type of the recipient agents, where
risk here refers to their likelihood to default. However, assessing this probability is subject to
Knightian uncertainty and therefore the bank is not in the position to price risk based on well
defined underlying distributions. Furthermore, correlations exist between the solvencies of
different borrowers that are significant even when they are small. Inter-borrower correlations
are typically assumed to be zero though this is quite uncertain, potentially leading to over-
optimistic estimates of bank invulnerability (Ben-Haim, 2010, section 4.1).

In evaluating or designing the bank’s loan portfolio, the following two questions (among oth-
ers) are pertinent. First, some of the uncertainty in assessing default probabilities can be re-
duced. How much reduction in uncertainty is needed to substantially increase the bank’s con-
fidence? How should uncertainty-reduction effort be allocated among different borrower pro-
files as characterized by their estimated default probabilities? Second, what loan-repayment
programs should be used for clients with different default-probability profiles? We describe
how info-gap can help banks to allocate loans and, in section 4, we compare it with the robust
control (min-max) approach.

This analysis uses a specific simplified banking example to illustrate generic policy-selection
implications of the info-gap robustness analysis that are relevant to a broad range of policy
issues.

3.1 Formulation

Consider a bank that plans a number of loans, all with the same duration to maturity. The po-
tential borrowers are of different risk types but all borrowers of the same risk type are identical.

Let:
N :  number of years to loan maturity
K :  number or risk-types

fen : repaymentin year n of risk type k

f matrix of f,, values

wg :  number (or fraction) of loans of risk-type &

w : vector of wy, values

Ny : number of years at which default could occur

t; - year at which default could occur, for j =1,..., Ny

prj :  Pprobability that a client of risk-type & will default at year ¢;
p: matrix of default probabilities p;

i: discount rate on loans



In case of default at ¢;, no payment is made in that year and in all subsequent years,
forj = 1...N;. We define ty, = N + 1, so “default” at year t5, means that the loan is
entirely repaid and default has not occurred. We also assume that py; ... pin, iS a normalized
probability distribution, so that the probability that borrowers of risk-type k do not default is:

Ny-1
pen, =1— > piy. 1)

The present worth (PW) of the entire loan portfolio, assuming no defaults, is:

N

PW =Y (1+14)" Zwszkna 2)

n=1
The no-default present worth of a single loan of risk-type k is:

N

PWi=> (144" fin: 3

n=1

Egs. (2) and (3) can be combined to express the total no-default present worth as:

K
PW =Y wi,PW,. (4)
k=1

We first formulate the probabilistic expected value of the present worth. We then define
the info-gap uncertainty of the probabilistic part of the model. The expected PW of a single
loan of risk-type & is:

Nd 1 t‘_l Nd 1 N
E(PW,) = Z Dkj Z L+0)™" frn + (1— Z pkj) (149" frn (5)
n=1 n=1

Ng—1 N
= Z (144)7" fon — Z Prj Y (L+1) 7" frn (6)
n=1 n=t;
PWy,
. Ng—1 o
= PWy— > piiPWy, (7)
j=1

where PW, is defined in eq.(3) and PWy; is defined in eq.(6).
From eq.(7) we obtain the following expression for the expected PW of the entire portfolio:

K - Ng—1
=> wy (PWk - > pijij> : (8)
k=1 j=1
We note that the expected present worth, E(PW), depends on the distribution of risk types,
expressed by the vector w, and on the repayment plans for the various risk types, expressed
by the matrix f, and on the matrix, p, of default probabilities.

3.2 Info-gap uncertainty and robustness

The info-gap model for uncertainty in the default probabilities employs estimated default prob-
abilities, p;;. Each estimated probability is accompanied by an assessment of its accuracy,
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s, expressing a judgment such as “The probability could be about p;; = 0.02 plus or minus
skj = 0.07 or more"! This judgment of the error could come from an observed historical vari-
ation but, under Knightian uncertainty, the past only weakly constrains the future and the error
estimate does not entail probabilistic information (such as defining a confidence interval with
known probability). Or the error estimate could be a subjective assessment based on contex-
tual understanding. The error estimate s;; does not represent a maximal possible error, which
is unknown. s;; describes relative confidence in the various probability estimates and does
not imply anything about likelihoods.

There are many types of info-gap models for representing Knightian uncertainty (Ben-Haim
2006, 2010). The following info-gap model is based on the idea of unknown fractional error of
the estimates, and is applied to the uncertain probabilities of default. This info-gap model is
an unbounded family of nested sets, U/(h), of probability distributions p.

Definition 1 Info-gap model of uncertainty. For any value of h, the set Z/(h) contains all
mathematically legitimate probability distributions whose terms deviate fractionally from their
estimates by no more than h:

Ng
Uh) = {pi Pej =0, Y bk =1, [prj — sl < skjh, YV k, ]} , h>0. 9)
j=1
The value of the fractional error, h, is unknown, and the range of uncertainty in p increases
as h increases, thus endowing h with its name: horizon of uncertainty. The info-gap model
of uncertainty in eq.(9) is not a single set. It is an unbounded family of nested sets. This
is expressed formally in eq.(9) by the statement “h > 0”. The horizon of uncertainty, A, is
unbounded: we do not know by how much the estimated probabilities err. The info-gap model
of uncertainty underlies the evaluation of robustness that we discuss shortly.

The performance requirement, at the bank’s discretion, is that the expected value of the
present worth be no less than a critical value PW,.:

E(PW) > PW,. (10)

We will explain later that prioritization of policy choices often does not require explicit specifi-
cation of the critical value PW..

Definition 2 Info-gap robustness. Robustness is the greatest horizon of uncertainty, h, up to
which the expected present worth of the portfolio, E(PW), is guaranteed to be no less than
the critical value PW,, i.e.:

hPW,,w, f) = max{h: ( min E(PW)) > PWC}. (11)
peU(h)
Robustness is the greatest value of h up to which eq.(10) will be fulfilled for all realizations
of p in U(h) if the bank adopts the loan structure specified by w.
If the probability estimates p,; were accurate (i.e. no Knightian uncertainty), then the
bank would be able to give out loans in ways that would maximize the expected present
worth of the portfolio. As these estimates become unreliable due to Knightian uncertainty,

1 subject of course to the probabilistic requirements of non-negativity and normalization.



the bank becomes less confident that the loans would achieve the ex ante expected present
worth. Intuitively, the robustness in eq.(11) answers the following question: how wrong can the
estimated probability p;; be, in units of s;;, and still achieve outcomes that are no worse than
PW,.?12 1t will be evident shortly that, if the bank wants higher confidence in the sense that
its choices are robust to a larger range of probability outcomes, then it will have to settle for
lower critical present worth PTW... Nonetheless, choice of the loan structure, w, often does not
require explicit numerical specification of PTW.. Appendix A derives the robustness function
for the special case where borrowers can default only at the mid point to maturity. Through
explicit parameterization we can then compare different portfolios so that the bank can choose
between them, to either reduce uncertainty or improve outcomes.

An interim summary of the info-gap robustness idea is as follows. Robustness to uncer-
tainty is good to have, but it is also necessary to ask: how much robustness is sufficient?
More robustness is obviously better than less, but the crucial question is: at what cost? It is
this cost that is most important to the policy maker and this is where info-gap theory is helpful.
Policy makers have views on what policy outcomes they want, and what outcomes they sim-
ply cannot tolerate. Quantifying the trade-off between robustness and outcome enables policy
makers to make informed decisions, as we now illustrate with an example.

3.3 Numerical Example

3.3.1 Formulation

The bank is designing a loan portfolio for (N =)10-year loans and has identified low- and high-
risk potential borrowers (therefore K = 2). The bank must decide what fractions of its portfolio
to loan to low- and high-risk clients. These fractions are denoted w; and w, respectively.!® The
bank must also specify the annual repayment schedule for low- and high-risk clients, denoted
by fi1, ..., fi,10 for low-risk clients and by f21, ..., f210 for high-risk clients. That is, client of
risk-type k returns the sum f; ,, at the end of the n-th year.

If default were not a possibility, then the bank could assess any proposed portfolio by
evaluating the discounted present worth (PWW) based on a minimal acceptable rate of return.
However, default is definitely possible, though assessing the probability of default for each
risk type, at each time step, is highly uncertain. The bank has made estimates for default
probabilities at the mid-point of the loan maturity (therefore ¢; = 5 is the single potential
default time and Ny = 2). The 10-year repayment plan for the low-risk clients is constant
at fi, = 0.1 forn = 1,...,10. We consider two different 10-year repayment plans for the
high-risk clients. Both plans decrease in equal increments over time. The first high-risk plan is
fz(l) = (0.12,...0.08) and the second high-risk plan is f2(2) = (0.14,...0.10). The total nominal
repayments for f; and fz(l) are the same, while the total nominal repayment for f2(2) is greater.
Further we assume that:

e The discount rate is 7 = 0.07.

2Note that the error estimates s;; are somewhat analogous to deviations around the mean in the Bayesian
case, but without employing probabilities.

Note that under no uncertainty, the bank would be able to optimally allocate w;, w2 by demanding a repayment
that leaves it indifferent between the two types of borrowers. In the presence of uncertainty it cannot do that, and
needs to consider alternative portfolios.



e The vector of estimated default probabilities is p = (0.02,0.05). Thus the high-risk
clients are assumed to be two and a half times as likely to default as the low-risk clients
but these are highly info-gap-uncertain: the true values may be much better or much
worse. 4

e We consider two different vectors of error estimates of these probabilities, correspond-
ing to lower and greater precision in the estimated probabilities. The lower-precision
case is s(Y) = (0.10,0.15) and the higher-precision case is 52 = (0.05,0.08). Knightian
uncertainty accompanies all probability estimates, and these error estimates appear in
the info-gap model of eq.(9).

e We consider two different risk-type distributions, expressed by the vector w. The pre-
ponderantly low-risk distribution is w(") = (0.7,0.3), and this will be used in the case
where the estimated default probabilities are less well know, as expressed by s(). The
preponderantly high-risk distribution is w(® = (0.3,0.7), to be used with 5.

e We consider the choice between two different portfolios, P; = (w(l),fg(l), sy and Py =
(w®, £, s@).

The concept of Knightian uncertainty is quantified, in info-gap theory, with an unbounded
family of nested sets of possible realizations of the uncertain entity. In the example discussed
in this section, the default probabilities are uncertain and eq.(9) is the info-gap model of uncer-
tainty. The bank has estimates of these probabilities for each client risk-type, as well as error
measures of these estimates, though these error measures are insufficient to specify proba-
bilistic confidence intervals, and do not specify maximum possible error. The basic intuition
of the info-gap model of uncertainty is that the fractional error of each estimated probability
is bounded, but the value of this bound is unknown. That is, the analyst has probability esti-
mates, knows the errors of these estimates are bounded, but does not know the magnitude of
the bound. In other words, a worst case cannot be identified.®

We now explain the idea of robustness. The default probabilities are unknown and the
estimates are highly uncertain. However, we are able to assess any proposed portfolio by
asking: how large an error in the estimated default probabilities can occur without causing the
expected PW to fall below an acceptable level? That is, how robust is the proposed portfolio
to error in the estimated default probabilities? If a proposed portfolio is highly robust, then
acceptable PW will be obtained even if the estimated default probabilities err greatly. Such a
portfolio would be more attractive than one whose robustness is low and thus highly vulnerable
to error in the estimates. In other words, portfolios are prioritized by their robustness for
satisfying a PW criterion, not by their predicted PTW. We will see that this prioritization does
not depend on specifying a numerical value for PW..

There are of course other relevant uncertainties, such as delayed or partial payments, correlations between
client defaults, etc. Furthermore, the bank may wish to evaluate a proposed portfolio with a quantile analysis
of the PW rather than with the expected PW. This simple example—illustrating the info-gap robust-satisficing
methodology and to comparing it with the min-max approach—will ignore these additional issues.

150ne could argue that default probabilities all equal to unity is the worst possible case. That is true by definition
but does not reflect the bank’s knowledge of its specific situation.
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Figure 1. Robustness curve Figure 2: Robustness curves
for loan portfolio P;. for loan portfolios P; (solid)
and P, (dash).

3.3.2 A robustness curve

Fig. 1 shows a robustness curve for portfolio ;. The horizontal axis is the critical present
worth: the lowest value of expected PW that would be acceptable to the bank. (The PW has
the same units as the client repayments, f.,,.) The vertical axis is the robustness: the greatest
fractional error in the estimated probabilities of default that do not jeopardize the corresponding
critical PW. For instance, at a critical PW of 0.6, the estimated default probabilities can err
by a factor of 3 without jeopardizing the PW requirement.

Three concepts can be illustrated with this figure: trade off, cost of robustness, and ze-
roing. The negative slope demonstrates that the robustness decreases as the required PIW
increases. This expresses a trade off: as the requirement becomes more demanding (as
critical PW increases) the robustness becomes lower. More demanding requirements are
more vulnerable to Knightian uncertainty than lax requirements. This is a generic property of
info-gap robustness functions, and is sometimes called “the pessimist’s theorem”.

The curve in fig. 1 expresses this trade off quantitatively, and the slope can be thought of
as a cost of robustness. A very steep negative slope implies that the robustness increases
dramatically if the requirement, critical PW, is slightly reduced, implying a low cost of robust-
ness. A gradual negative slope implies the opposite and entails large cost of robustness.
From fig. 1 we see that the cost of robustness is relatively high when the critical PW is large
(lower right). The cost of robustness actually becomes zero at the upper right when the slope
is infinite. The robustness rises to infinity at low values of critical PW in fig. 1. Specifically, the
robustness is infinite if the required present worth is less than the least possible value (this
least possible value occurs when all risk-types default at midterm).

At the lower right end of the graph in fig. 1 we see that the robustness vanishes for large
critical values of PW. More precisely, the robustness is zero if the required present worth
equals or exceeds the value based on the estimated default probabilities (eq.(14) in the ap-
pendix). This is called the zeroing property and it states that a required PW that equals or
exceeds the estimated PW has no robustness to Knightian uncertainty because default prob-
abilities may exceed the estimated values. While this is perhaps not surprising, it entails two
methodological conclusions. First, the estimated PW should not be used to prioritize alterna-
tive portfolios (because the estimated value has no robustness against Knightian uncertainty).
Second, the Knightian uncertainty may in fact motivate a preference reversal. We explore
these two methodological conclusions in fig. 2, where we plot both portfolios P; (solid curve)
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and P, (dashed curve).

3.3.3  Which portfolio for the bank’s performance requireme nt? A preference reversal

Figure 2 shows robustness curves for portfolios P; (solid) and P, (dash). In P; the prepon-
derance of clients are low-risk, while in P, the preponderance are high-risk. The estimated
default probabilities are the same for both portfolios, but less effort was invested in verifying
the estimates for P, than for P,, which might be justified by noting that the preponderance of
clients in P; are low-risk in any case. The repayment plan for low-risk clients are constant in
time and the same in both portfolios. The repayment plans for high-risk clients decrease in
time by moving more of the debt to early payments. Furthermore, in P, the repayments are
greater than in P;.

Fig. 2 shows that robustness vanishes at a greater value of critical PW for P; than for Ps,
as seen from the horizontal intercepts of the robustness curves. From the zeroing property,
this means that P;’s estimated PW is greater than P,’'s. If these estimates were reliable
(which they are not due to the Knightian uncertainty) then we would be justified in preferring
P1 over P,. Knightian uncertainty and the zeroing property motivate the first methodological
conclusion: do not prioritize portfolios according to their estimated PWWs.

The predicted PW's are not a reliable basis for portfolio selection because those predic-
tions have zero robustness. Hence, we “migrate” up the robustness curve, trading critical
PW for robustness. At the lower right end of the curves we see that the cost of robustness
is greater for P; than for P, (P, has steeper negative slope). The differences in slopes and
intercepts result in crossing of the robustness curves. This creates the possibility for a re-
versal of preference between the two portfolios. For instance, suppose the bank requires a
PW no less than 0.7. From the solid curve we see that the robustness of P; is 1.0 which
exceeds the robustness of P, which is 0 at this PW requirement. The robust-satisficing deci-
sion maker would prefer P;. However, if the bank can accept a PW of 0.6, then P, is more
robust against Knightian uncertainty than P;. The robust-satisficing prioritization would now
prefer P, over P;. The robust-satisficing method implies that the prioritization depends on the
decision maker's outcome requirement, and thus may change as that judgment changes.

Note that the choice between P; and P, does not depend on specifying a numerical value
for PW.. Py is preferred for any PW,. exceeding the value at which the robustness curves
cross one another (about 0.65). P, is preferred for any other value of PWV..

It is important to understand why this preference reversal occurs. Portfolio P; has relatively
more low-risk clients than portfolio P,. Consequently, given the parameterization assumed,
P1 would generate higher expected present worth if there were no Knightian uncertainty and
would be the portfolio to choose. However, it is also the portfolio that is less precisely mea-
sured. As discussed above, more effort has gone into estimating default probabilities for
portfolio P, as expressed by the lower s;; values in the info-gap model of eq.(9). In other
words, while P, would be worse than P; if there were no Knightian uncertainty, the assess-
ment of P, is less uncertain. Thus P, has lower estimated expected present worth (intercept
further left), but P, also has lower cost of robustness (steeper slope). In short, there is a
dilemma in the choice between P; and P,. The dilemma is manifested in the crossing of the
robustness curves. This crossing has the effect that, for moderate ambitions (anything below
PW. = 0.65), portfolio P, satisfies these ambitions for a greater range of default probabilities.
The choice between the portfolios (and the resolution of the dilemma) depends on the deci-
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sion maker’'s choice of the critical present worth. Any value less than 0.65 is more robustly
achieved with P, and this portfolio would be chosen, while any value greater than 0.65 would
lead to choosing P;.
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Figure 3. Robust-satisficing Figure 4. Robust-satisficing
and min-max agree. and min-max disagree.

4 Robust satisficing vs min-max

We now use figs. 3 and 4 to compare the min-max and robust-satisficing decision methodolo-
gies, identifying situations in which they agree or disagree. We explained earlier that min-max
and robust-satisficing require different judgments to be made by the decision maker. Min-max
requires specification of worst case probability estimates, which is equivalent to assessing a
maximum possible uncertainty (vertical axis). Robust-satisficing requires identification of a
worst acceptable outcome, or at least delimiting the range of worst acceptable outcomes (hor-
izontal axis). Let U, denote the min-max assessment of the maximum uncertainty, and let
PW,. denote the robust-satisficing lowest acceptable PW.

Figs. 3 and 4 shows robustness curves for portfolios P; (solid) and P, (dash), from the
lower-right portion of fig. 2. A robust-satisficing decision maker’'s least acceptable present
worth, PW,, is labeled on the horizontal axis. The thin vertical line on fig. 3 shows that
this analyst would prefer P; (solid) over P, because P; is more robust against Knightian
uncertainty for this requirement. A min-max decision maker's maximum possible uncertainty,
Umax, IS labeled on the vertical axis. The thin horizontal line shows that this analyst would
also prefer P; (solid) over P, because the worst outcome at U,,..« is better with P;. The min-
maxer and the robust-satisficer agree on the prioritization of the portfolios, but for different
reasons because their initial judgments differ. The min-maxer tries to ameliorate the maximal
uncertainty; the robust-satisficer tries to achieve no less than an acceptable outcome.

Fig. 4 shows the same robustness curves but with a different judgment by the min-max an-
alyst, who now identifies greater maximum possible uncertainty. The min-maxer now prefers
P> (dash) because, at this larger Up,.x, the worst outcome for P, is better than for P;. The
robust-satisficer would probably not dispute that uncertainty could be as great as Uy,.x. How-
ever, portfolio P, is less robust than P; for the specified critical outcome PW.,, so the robust-
satisficer still prefers P; (solid). Now min-max and robust-satisficing prioritize the portfolios
differently.
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The central ideas illustrated in this example are zeroing, trade off, preference reversal, and
the situations in which min-max and robust-satisficing agree or disagree. Zeroing states that
predicted outcomes (estimated expected PW in our example) have no robustness against
Knightian uncertainty and therefore should not be used to prioritize the options. Trade off
means that robustness increases as the performance requirement becomes less demanding.
Robustness can be “purchased” by reducing the requirement, and the slope of the robustness
curve quantifies the cost of robustness. The potential for preference reversal between op-
tions arises when their robustness curves cross each other. The robust-satisficing analyst’s
preference between the options depends on the outcome requirement. Finally, min-max and
robust-satisficing both attempt to manage non-probabilistic Knightian uncertainty, but they are
based on different initial judgments by the analyst, and they may either agree or disagree on
prioritization of the options.

5 Trade-off revisited: Proxies for robustness in
gualitative analysis

We now extend the discussion, in section 3, of the trade-off between robustness and perfor-
mance performance in a qualitative context. We discuss proxies for the concept of robustness
that can support qualitative analysis, deliberation and debate, leading to selection of policy.
Qualitative and quantitative analyses are not mutually exclusive. We first describe five con-
ceptual proxies for robustness, and then briefly consider an example.

5.1 Five conceptual proxies for robustness

We consider five concepts that overlap significantly with the idea of robustness against un-
certainty, and that are useful in the qualitative assessment of immunity against failure under
severe uncertainty. These five concepts also overlap one another, though each concept em-
phasizes a different aspect of the overall problem. The five proxies for robustness are
resilience, redundancy, flexibility, adaptiveness and comprehensiveness. A policy has high
robustness if it is strong in some or all of these attributes; it has low robustness if it is weak in
all of them.

Resilience of a policy is the attribute of rapid recovery of critical functions. Adverse surprise
is likely when facing severe uncertainty. A policy is robust against uncertainty if it has the ability
to rapidly recover from adverse surprise and achieve critical outcomes.

Redundancy of a policy is the attribute of providing multiple alternative solutions. Robust-
ness to surprise can be achieved by having alternative policy responses available.

Flexibility (sometimes called agility) of a policy is the ability for rapid modification of tools
and methods. Flexibility or agility, as opposed to stodginess, is often useful in recovering from
surprise. A policy is robust if its manifestation or implementation can be modified in real time,
on the fly.

Adaptiveness of a policy is the ability to adjust goals and methods in the mid- to long-term.
A policy is robust if it can be adjusted as information and understanding change. Managing
Knightian uncertainty is rarely a once-through procedure. We often have to re-evaluate and
revise assessments and decisions. The emphasis is on the longer time range, as distinct from
on-the-spot flexibility.
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Comprehensiveness of a policy is its interdisciplinary system-wide coherence. A policy
is robust if it integrates considerations from technology, organizational structure and capabil-
ities, cultural attitudes and beliefs, historical context, economic mechanisms and forces, and
sometimes other factors. A robust policy will address the multi-faceted nature of the economic
problem.

5.2 Policy examples

Consider the design of financial architecture.  We want banks to intermediate, take risks,
invest, and contribute to growth. When economic circumstances are favourable, banks make
profits and it is easy for them to perform their tasks. Moreover, when we thoroughly understand
how the economy operates, it is possible to design regulation that will allow banks to perform
their tasks optimally.

However, we also want banks to be able to operate in unfavourable circumstances that
we understand poorly and whose future development is hard to predict. Good regulation, that
is robust to uncertainty, will increase bank resilience: the ability of banks to continue critical
functions even after adverse surprise. For instance, a higher capital adequacy ratio gives
banks greater resilience against unexpectedly large loss. A regulatory policy has beneficial
redundancy if different aspects of the policy can at least partially substitute for one another
as circumstances change. For example, banks’ lack of market access can be substituted by
Central Bank liquidity provision as was made possible by Target 2 in the euro area. Beneficial
flexibility can be achieved by enabling short-term suspension of service, or central bank inter-
vention, or other temporary measures. A policy has mid- to long-term adaptiveness if it can
be modified in response to longer-range changes. For instance, capital adequacy ratios need
to be stable and known to market participants, but they may be adjusted from time to time
to reflect assessments of increasing or decreasing systemic stability. Finally, the comprehen-
siveness of a policy is expressed in its responsiveness to broad economic and social factors,
and not only to local or institution-specific considerations.

We can now understand the trade-off between robustness (and its proxies) and the quality
of the outcome achieved by banks. Several examples will make the point. Higher capital
adequacy ratios will have higher resilience against adverse surprises, but lower profitability
for banks and will result in less financial intermediation offered. Redundant controls, that
‘click in’ to replace one another as needed, provide greater protection against adversity, but
constrain the ability of banks to be pro-active in their markets. Flexibility of the regulator (or of
the regulation policy) enhances overall stability by enabling effective response to destabilizing
bank initiatives that are motivated by adversity. However, flexibility of the regulator will tend to
reduce bank profit and versatility and to impede planning by market participants.

These examples illustrate that as the regulatory policy is adjusted to enhance robustness
(and its proxies) against Knightian uncertainty, the tendency will be to reduce the profitability
and quality of service provided by banks, especially in normal times. The corollary is that a
policy that aims to maximize bank profit and the extent of intermediation will also, inadver-
tently, minimize the robustness against surprise. Understanding of this trade-off enables the
policy maker to seek an acceptable balance between performance and robustness. Further-
more, we have seen that the policy maker can analyze robustness against uncertainty even in
situations in which quantitative models are lacking. This is not to say that quantitative models
are unneeded. Rather, the intuition behind the mathematics of quantitative analysis can be
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employed even when the math is absent.

This trade-off is also very prominent in monetary policy discussions. Monetary policy
architecture in the past 20-30 years has relied on defining price stability and then announcing
a target that best captures it. But the recent protracted period of low prices, as well as interest
rates being at the zero lower bound, have challenged the merits of aiming at price stability
altogether. The argument is that increasing the inflation target and therefore moving away from
price stability, delivers a better buffer (greater resilience) from the very distortionary effects of
disinflation and ultimately deflation. A trade-off therefore emerges between achieving price
stability versus greater flexibility to deal with very distortionary negative shocks. At the same
time, a higher inflation objective provides a greater choice of policies (greater redundancy)
and indeed adaptability to unfavourable circumstances.

The method of info-gap robustness analysis captures this trade-off and allows policy mak-
ers to rank alternative policies. The absolute position of available policies in the robustness-
vs-performance space, as well as the slope (i.e. the robustness gains when giving up per-
formance by one unit) are powerful tools in the hands of policy makers to inform decision
making.

6 Conclusion

We have explored some of the implications of Knightian uncertainty for policy selection. Our
main claim is that Knight’s non-probabilistic “true uncertainty” requires very different manage-
ment than is required for handling probabilistic risk. We used a simplified quantitative bank-
loan example to illustrate the method of info-gap robust satisficing, and we compared this with
the method of min-max. Both methods are non-probabilistic and both employ concepts of ro-
bustness. The choice between these methods hinges on the prior judgments that the analyst
can make. Info-gap robust satisficing focuses on outcome requirements (e.g. lowest accept-
able present worth, or greatest acceptable unemployment, etc.). Info-gap robust-satisficing
is driven by the decision maker's performance requirements. In contrast, min-max focuses
on the analyst’s judgment of the worst contingency. The min-max method then ameliorates
this worst case, and does not require specification of an outcome requirement. Info-gap, in
turn, does not presume knowledge of a worst case. We have also illustrated how conceptual
proxies for the idea of robustness can be used in qualitative policy analysis.

The info-gap robust satisficing methodology quantifies an irrevocable trade-off between
confidence (expressed as robustness to uncertainty) and performance (embodying the deci-
sion maker’s outcome requirement). This trade-off can be interpreted as a cost of robustness:
robustness can be enhanced in exchange for reducing the performance requirement. The
robustness curve characterizes any proposed policy as a monotonic plot of robustness versus
performance requirement, where the slope reflects the cost of robustness and the horizontal
intercept reflects the putative error-free outcome.

If the robustness curves of two alternative policies do not cross one another, then one
policy is more robust than the other for all feasible outcomes. That robust-dominant policy
is preferred, without the need to specify an outcome requirement. In this case, the putative
optimum policy (whose estimated outcome is better) is also the robust-preferred policy.

If the robustness curves of two alternative policies cross one another, as seen in fig. 2, then
the robustness analysis can lead to a reversal of policy preference from the putative optimum.
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The policy that is more robust (and hence preferred) at high performance requirement, will be
less robust (and hence not preferred) at lower requirement. Info-gap robust-satisficing leads

to policy selection that will achieve the performance requirement over the greatest range of
Knightian uncertainty.
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A A Special Case: One Default Time

We consider a special case for simplicity, N; = 2, meaning that if default occurs then it hap-
pens at time t;. We derive an explicit analytical expression for the inverse of the robustness
function, &, thought of as a function of the critical present worth, PW,, at fixed loan portfolio
(w, f). The analytical expression for the general case is accessible but more complicated and
is unneeded to achieve the goals of this example.

Definition 3 Define a truncation function: z+ = z if x < 1 and zt = 1 otherwise.

Definition 4 Let m(h) denote the inner minimum in the definition of the robustness function,
eq.(11).

A plot of m(h) vs h is identical to a plot of PW, vs h(PW,). Thus m(h) is the inverse
function of A(PW.). Given that N, = 2, the expectation of the present worth, eq.(8), becomes:

K
E(PW) =) wy (PWk - meWm) - (12)
k=1
From eq.(12) and the info-gap model of eq.(9) we see that the inner minimum in eq.(11) is
obtained, at horizon of uncertainty h, when the probability of default of each risk type, p1, is
as large as possible. Thus:

K
m(h) = > wi (PWy = [pg1 + sah] " PWa ), (13)
k=1
and m(h) decreases piecewise-linearly as h increases. Hence, since m(h) is the inverse of
the robustness function, E(PWC), we see that E(PWC) decreases piecewise-linearly as PW,
increases.
To explore the significance of this we first define several quantities. Let E(PW) denote the
expectation of the present worth with the estimated probabilities, from eq.(12) with py; rather
than py; (recall that Ny = 2):

K
E(PW) = Z Wi (pT//Vk — ﬁklﬁﬁ/kl) . (14)
k=1

Let Ey denote the expectation of the present worth when each probability of default equals
unity (eq.(8) with p,; = 1 and Ny = 2):

K
Eo= wy (PWk - PWkl) . (15)
k=1
Note that:
Eo < E(PW). (16)
Finally,

Definition 5 Define h.x as the value of horizon of uncertainty, 4, beyond which all the prob-
abilities terms [jx1 + si1h] T in eq.(13) equal unity:

1_5
Amax = max ﬂ.

1<k<K 81 (47
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Now we find, from egs.(13)—(15), that:

E(PW) ifh=0
m(h) = { piece-wise linearly decreasing if 0 <h < hpax (18)
Ep if Amax < h.

From this relation we see that the robustness function has the following form:

0, PW,. < Eg
h(PW.) = { piece-wise linearly decreasing, E, < PW, < E(PW) (29)
0, PW, > E(PW).

This special case is explored with a numerical example in section 3.3.
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