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Abstract Resilience in recovery of critical functionality, after severe adverse events such as earth-
quakes, is a key concept in design of structures and infrastructures. We discuss three distinct chal-
lenges: the inherent uncertainty of the system, exogenous uncertainty of loads on the system, and
vulnerability of the putative system to adverse events. We develop an info-gap robust-satisficing
approach for managing these challenges. We illustrate the method with seismic examples com-
paring relatively flexible base-isolated structures against stiffer seismic resistant structures. These
examples illustrate that the preference between these designs, based on their robustness against
uncertainty, depends on the performance requirement. The potential for reversal of preference be-
tween competing designs is quantified by intersection between the info-gap robustness curves of
those designs. We prove a proposition asserting conditions under which the robustness curves for
two different designs will cross one another, entailing the potential for reversal of preference between
the two designs. The resulting robust-satisficing design decision may differ both from performance-
optimization, in which the design that is predicted to have better performance will be chosen, and
from the min-max design.

Keywords: Robustness; resilience; info-gap; recovery; base-isolated structure; seismic resistent
structure.
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1 Introduction

Resilience has become a widely-accepted key to design of structures and infrastructures against
severe hazard, such as megathrust earthquakes. It is usual that structures and infrastructures are
designed against the so-called assumed hazard scenarios, that are based on historical precedents
and present scientific knowledge. However, like the 2011 Tohoku earthquake and tsunami, never-
before-seen hazard can always happen. Mochizuki and Komendantova [31] reported that, in post-
2011 Japan, it is recognized that adverse surprise, worse than historical precedents, will occur
and, hence, one must plan for the unknown. Also, it is recognized that, although science is certainly
useful, it always has a limit, and uncertainty, against which one must prepare plans, always remains.
In this paper, we present a methodology to evaluate resilience of a structural system quantitatively,
while fully addressing such severe uncertainty of future hazard.

Several definitions, or measures, of structural resilience have been proposed; see, e.g., [4] for a
survey. Roughly speaking, it is commonly recognized that two key issues providing high resilience
are “robustness and/or resilience to loss of functionality” and “short time to recovery”; see, e.g.,
[6, 10, 13, 17–19, 30, 33, 34, 42]. Among others, the so-called resilience triangle [6, 13] is often
adopted to assess resilience of structures. There, functionality of a damaged structure is considered
a linear function of time, and the area of the resilience triangle is defined by three points: the 100%
functionality right before the damage event, the functionality right after the damage event, and the
100% functionality at the recovery time. A small value of the area of the resilience triangle is pre-
ferred over a large value. It is straightforward to generalize this definition to a nonlinear functionality
function. This resilience measure has been applied to a hospital system [7, 12–15, 30], bridge and
transportation networks [3, 9, 20], power networks [8], community seismic performance [10, 16],
economic resilience of interdependent infrastructures [34], and braced-frame office buildings [44].

When we attempt to evaluate seismic resilience of structures, the most difficult quantity to pre-
dict is the recovery time, as pointed out in much literature [13, 21, 41]. This is because the time to
recovery possesses many sources of uncertainties, including earthquake intensities, material pro-
curement, relocation of functions, available human resources, damage in supply of daily essentials,
economy, etc. Also, as mentioned above, future hazard is also difficult to predict, as we acknowl-
edge that it can be worse than historical precedents. To assist decision-making under such severe
uncertainties, this paper provides a general framework for quantifying resilience based on info-gap
theory [2].

As a concrete example of resilience evaluation under uncertainty, attention in this paper is fo-
cused on seismic design of buildings. More specifically, we compare the conventional fixed-support
building system, called the Seismic Resistant Structure (SRS), and the seismically base-isolated
system, called the Base-Isolated Structure (BIS). We shall see that, rather surprisingly, robustness
preference between these two structural designs can reverse as the resilience requirement changes.

The seismically base-isolated system has been widely used to improve seismic performance of
buildings [11]. The system incorporates seismic isolators to decrease the structural response of
the superstructure dramatically during a strong earthquake, compared with the conventional fixed-
support buildings. On the other hand, flexibility of the seismic isolators, which is requisite for the
seismically base-isolated system, results in large relative horizontal displacements of the super-
structure, particularly during an earthquake excitation including long period pulses, such as near-
fault ground motions [22, 29]. Therefore, sufficiently wide clearance, called the isolation gap or the
seismic gap, should be left between the base of a seismically isolated building and the surrounding
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moat wall. However, it is often difficult to retain sufficient width due to diverse practical restrictions,
particularly in a densely built-up area. Also, earthquake loads, which are assumed in the structural
design procedure to determine the width of the isolation gap, inevitably possess large uncertain-
ties. Therefore, collision between a seismically isolated building and its surrounding moat wall may
possibly be induced by strong earthquake excitation. Many studies, including experimental simula-
tion [26], have been done on the influence of earthquake-induced pounding on seismically isolated
buildings; see [23, 25, 27, 35, 36, 43, 45] and the references therein.

A seismically isolated building can also suffer earthquake-induced impact events against its ad-
jacent conventional fixed-support buildings at the upper floor levels [1, 24, 28, 38, 39] before impact
events against the surrounding moat wall. It is well known that a base-isolated building in Los An-
geles actually underwent impact against its entry bridge during the 1994 Northridge earthquake
[32]. Earthquake-induced pounding against either the surrounding moat wall or the adjacent fixed-
support buildings can cause significant damage to the base-isolated building. This is because high
vibration modes of the superstructure induced by the pounding can cause much greater accelera-
tion response [24] and the inelastic deformation of the superstructure often concentrates at lower
floors [35, 43]. Greater accelerations of floors also yield significant damage in acceleration sensitive
non-structural components, such as ceilings and elevators. Although there exist some suggestions
of making use of bumping or shock absorbers to mitigate the damage due to earthquake-induced
pounding [23, 40, 43], it is very rare for a real-world building to incorporate such subsidiary equip-
ment.

In short, the base-isolation system is an innovative seismic system that can reduce the inter-
story drifts, shear forces, and floor accelerations of the superstructure. Therefore, one can design
the superstructure of a seismically isolated building with lower stiffness compared with the conven-
tional fixed-support building. Due to the flexibility of seismic isolators, however, a seismic isolation
building may possibly undergo pounding during a large earthquake. Once pounding occurs, dam-
age of a seismically isolated building can possibly become severer, because the superstructure has
less stiffness compared with a conventional fixed-support building. Thus, an innovative and po-
tentially better structural system has unavoidable possibilities of severer damage, from which the
conventional structural system is usually free.

As a study relevant to this paper, Dong and Frangopol [21] proposed a method for evaluating
the seismic sustainability and resilience of conventional and seismically isolated buildings. Given a
seismic event, the probability of failure is computed to assess the seismic performance of structural
and nonstructural components. Then the probability distribution of the recovery time is assumed
in order to evaluate the resilience of a building. They conclude that the base-isolation system can
drastically reduce the seismic repair loss, down-time, and fatalities, compared with the conventional
fixed-support building system. The approach presented in this paper does not need to specify the
seismic event. Rather, the intensity, earthquake center, dominant period of earthquake excitation,
and other properties of the seismic event are considered uncertain. Also, our approach is applicable
even if reliable stochastic information of the recovery time is not available.

To develop reliable methods for evaluating the seismic resilience of structures, one may attempt
to construct sophisticated models of the recovery time and the loss of functionality of structures by
integrating diverse details reflecting the reality. Much effort has been done, as found in the literature
cited above. However, no matter how much the models are elaborated, it is not possible to predict the
structural resilience precisely, due to the uncertainty and the limitation of science mentioned above.
In this paper, we focus on this fact, and present a general framework, based on the info-gap theory,
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for decision-making under uncertainty. The two most distinctive features of info-gap theory are (i) it
does not depend on knowledge of probability distributions, and (ii) it does not presume knowledge
of a worst case. Any method for evaluating the structural resilience can be incorporated into this
framework, and the structural designs under consideration will be ranked in terms of robustness
against uncertainty for satisfying the requirement on the structural resilience. Info-gap theory [2] is
a suitable, and implementable, methodology for developing such a framework.

The paper is organized as follows. Section 2 presents a conceptual discussion of vulnerabil-
ity, uncertainty and robustness, along with simple examples of the proposed method for quantify-
ing resilient performance under uncertainties. Section 3 presents a numerical example to explore
the modelling and management of both inherent and exogenous uncertainty in a realistic setting.
Section 4 establishes a proposition that provides a sufficient condition for existence of preference
reversal between two structural systems such as SRS and BIS. Some conclusions are drawn in
section 5.

2 Preliminary Examples: Vulnerability, Uncertainty and Robustness

2.1 Conceptual Discussion

In this section we discuss the distinctions between inherent vulnerability of a structure, inherent
uncertainty of a structure, and vulnerability to exogenous uncertainty. We demonstrate how prioriti-
zation of design options is based on the info-gap approach to robustness to uncertainty in response
to all three of these challenges. The discussion is illustrated with two simple examples. Section 3
contains a more realistic example.

In order to provide clarity to the generic discussion, consider two different design concepts for a
structure for seismic safety: Seismic Resistant Structure (SRS) and Base-Isolated Structure (BIS). It
is important to note that the method presented in this paper is applicable to any structural systems.
Roughly speaking, an SRS is designed to be very stiff. The stiffness of the structure prevents major
damage over a large range of seismic loading, but the stiffness also results in damage even at low
loads, increasing in severity as the load increases. In contrast, a BIS structure is built on flexible
bearings or pads that isolate the structure from the earthquake motion, but allow larger motion of the
entire structure. Damage begins to accumulate in a BIS only at higher seismic loads than in an SRS.
However, large displacements can result in a BIS at large loads, resulting in closure of clearance to
surrounding obstructions and more severe damage than an SRS at large load. In rough summary,
a BIS is safer at low or moderate loads while a BIS can be less safe than an SRS at larger loads.

Both BIS and SRS have inherent vulnerability: the potential for large and damaging displace-
ments. Any vulnerability that is a pre-existing state of the system is called inherent vulnerability.
[5, 46]. This vulnerability is greater for a BIS than for an SRS at large loads, but the situation is re-
versed at low loads. The vulnerability is an inherent attribute of the dynamic model of the structure,
and is not a result of structural uncertainty or of uncertainty in the load.

Both BIS and SRS have inherent uncertainty in their performance. Material properties, phys-
ical dimensions, and static and dynamic properties are estimated and modeled, some with greater
accuracy and precision than others. This type of uncertainty derives from the structure itself and its
subsystems, and is called inherent uncertainty (also referred as endogenous uncertainty [37]). Re-
silience of functional characteristics depends on many factors inherent to the system, including its
support network, that are imperfectly or even poorly known. Consequently, seismic damage to the
structure may be worse (or better) than anticipated from a design-base load simply due to deviation
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of the actual structure or its operational environment from its conceptualization by the designer. The
inherent uncertainty of a structure means that its inherent vulnerabilities may be greater or less than
anticipated.

Both a BIS and an SRS are vulnerable to exogenous uncertainty in the amplitude and temporal
waveform of the seismic load. Either structure could be designed to perform adequately for specified
load levels, but surprisingly large loads can result in failure. This type of uncertainty is sourced from
the environment, and is called the exogenous uncertainty [37]. This exogenous uncertainty in the
load is not an inherent vulnerability nor an inherent uncertainty of the structure, though exogenous
uncertainties can exacerbate an inherent vulnerability.

The design methodology for managing all three challenges—inherent vulnerability, inherent un-
certainty, and exogenous uncertainty—is based on the idea of robustly satisfying critical per-
formance requirements [2]. The designer identifies the critical functional attributes that must be
achieved in order for the structural performance to be adequate. For example, following an earth-
quake, basic structural integrity must never be lost and electric power must be recovered within a
specified duration after the event. The designer will prioritize the design alternatives in terms of
their robustness-against-uncertainty for satisfying the critical performance requirements. A system
is highly robust if the performance is adequate for any realization over a large range of surprise.
A system has low robustness if even small deviations can result in unacceptable performance. A
highly robust design is preferred over a design with low robustness. This is called “robust satisficing”,
where “to satisfice” means “to satisfy critical performance requirements”.

Note that robust satisficing is different from prioritizing design alternatives in terms of their pre-
dicted performance. A design methodology that could be called “performance optimization” would
rank design alternatives in terms of the substantive quality of their predicted performance. For in-
stance, a structure whose predicted amplitude of displacement in response to an earthquake is
low, would be preferred over a structure with larger predicted displacement. The robust satisficing
methodology ranks the alternatives in terms of their robustness against uncertainty for satisfying
performance requirements, and not in terms of their predicted performance. The robust-satisficer
will optimize the robustness, while the performance-optimizer will optimize the predicted behavior of
the structure. These two strategies may, or may not, lead to the same design decision, and in any
case will entail different design considerations, as we now illustrate with two simple examples. A
more detailed example is developed in section 3.

2.2 Time to Recovery with Inherent Vulnerability and Exogenous Uncertainty

An important property of many technological systems is the time to recovery (TTR) after a disruptive
event. A building after an earthquake, an airplane after loss of an engine, urban infrastructure
after a flood, etc., all need to recover critical functionalities within specified times. We will illustrate
the concepts of inherent vulnerability and exogenous uncertainty, and the methodology of info-gap
robust satisficing, by comparing the two seismic design concepts discussed earlier: SRS and BIS.
We will illustrate the concept of inherent uncertainty in section 2.3.

We first briefly summarize the analysis of robustness in info-gap theory [2], which is based on
the following three elements:

• The system model that describes the behavior of the system. In our case, we focus on models
of SRS and BIS.
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• The performance requirement that specifies functionalities that the system must achieve. The
performance requirement that we consider is the structural resilience evaluated in terms of
TTR.

• The uncertainty model called the info-gap model. This is an unbounded family of nested sets
of possible realizations of uncertain parameters or functions.

Suppose that a system performance of interest is given as a function of a system parameter x. We
use g(x) to denote the system performance, where we assume that a small value of g(x) is preferred
over a large value. Consider the performance requirement

g(x) ≤ gc (1)

where gc is the maximal allowable value. Suppose that x has uncertainty. Let x̃ denote the nomi-
nal value (or the best estimate) of x. We use X (α, x̃) to denote the set of possible realizations of
x , where α ≥ 0 is a parameter representing the level of uncertainty, called the horizon of uncer-
tainty. An info-gap uncertainty model has two properties: (i) X (0, x̃) = {x̃} (called contraction), and
(ii) α > α′ ≥ 0 implies X (α, x̃) ⊇ X (α′, x̃) (called nesting). That is, (i) α = 0 means the absence of
uncertainty, and (ii) the range of possible realizations of x increases as α increases. The robustness
function is defined as the maximal value of the horizon of uncertainty up to which the performance
requirement is satisfied:

α̂(x̃, gc) = max
{
α :
(

max
x∈X (α,x̃)

g(x)
)
≤ gc

}
.

By definition, any element of X (α̂(x̃, gc), x̃) satisfies the performance requirement, eq.(1). Therefore,
if follows from the nesting property of the info-gap model that a larger value of the robustness
function means immunity to a larger horizon of uncertainty.

We are now in position to apply the info-gap theory to the robustness analysis of an SRS and
a BIS. We require that the TTR of basic functions of the structure, after an earthquake event, not
exceed a critical value, tc. Let tq(a) denote the TTR after a seismic event whose load amplitude is
a, where q = 0 denotes SRS and q = 1 denotes BIS.

The TTR functions for the two designs, SRS and BIS, are:

t0(a) =

{
0, if a < β0

α0(a− β0), if a ≥ β0
(2)

t1(a) =





0, if a < β1

α1(a− β1), if β1 ≤ a < δ1

γ1(a− δ1) + α1(δ1 − β1), if δ1 ≤ a

(3)

where:
γ1 > αq > 0, δ1 > β1 > β0 > 0 (4)

The left hand inequality of eq.(4) is intended to state that γ1 exceeds both α0 and α1, both of which
are positive.

These TTR functions are illustrated in fig. 1.1 The recovery times for both design concepts
increase as the earthquake load increases. The SRS (q = 0) has greater TTR than the BIS (q = 1)
at low and intermediate loads, while BIS recovers more slowly at large loads.

1In sections 2.2 and 2.3, we present the fundamental methodology of the proposed method by using simple examples.
For simple presentation, the units are omitted. Alternatively, the reader may regard variables as dimensionless quantities.
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Figure 1: Recovery-time functions
for example in section 2.2. α0 =
α1 = 1, γ1 = 3, β0 = 0.5, β1 = 1.5,
δ1 = 3.

The performance requirement for either structure, in this simplified example, is that the TTR not
exceed the critical value tc:

tq(a) ≤ tc (5)

Both structures have inherent vulnerabilities with respect to this performance requirement: there is
some load level (different for each design) at which the TTR function for that design, either eq.(2) or
(3), would violate the performance requirement in eq.(5).

In this simple example we will suppose that the load amplitude is estimated to be ã, and that
the true amplitude, a, could deviate by as much as ±s or more where s is a known positive error
estimate. We have no probabilistic information about the load. While the load amplitude must by
definition be positive, we do not know the fractional error of the true amplitude, a, with respect to
the estimate, ã. This exogenous uncertainty is represented by the following fractional-error info-gap
model:

U(h) =

{
a : a ≥ 0,

∣∣∣∣
a− ã

s

∣∣∣∣ ≤ h

}
, h ≥ 0 (6)

U(h) is the set of all non-negative load amplitudes whose fractional deviation from the estimate is
no greater than h. U(h) is a set-valued function of the parameter h. That is, the info-gap model is
the unbounded family of nested sets, U(h), of load amplitudes. There are two levels of uncertainty
here. For given h, the value of a is unknown within an interval, but also the value of h is unknown.
The uncertainty sets U(h) become more inclusive as h increases, which endows h with its meaning
as an ‘horizon of uncertainty’. There is no known worst case because the horizon of uncertainty is
unknown, as expressed by the assertion ‘h ≥ 0’ in eq.(6).

The info-gap method of robust satisficing combines three components: the system model tq(a)
in eqs.(2) or (3), the performance requirement tc in eq.(5), and the uncertainty model U(h) in eq.(6).
The robustness is the greatest horizon of uncertainty, h, up to which the system model tq(a) satisfies
the performance requirement for all realizations of the uncertain load a. The formal definition of the
robustness function is:

ĥq(tc) = max

{
h :

(
max
a∈U(h)

tq(a)

)
≤ tc

}
(7)

ĥq(tc) is the robustness of design q for requirement tc, which is the greatest horizon of uncertainty h

up to which tq(a) does not exceed tc for all loads a in U(h).
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The evaluation of the robustness function is discussed in appendix A. Robustness curves are
plotted in fig. 2.

0 5 10 15
0

1

2

3

4

t0(ã) = α0(ã − β0)
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1/(sγ1)
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q = 1
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1/(sα0)
ĥq(tc)

t1(ã) = α1(ã − β1)

Figure 2: Robustness functions for
example in section 2.2. Same pa-
rameters as fig. 1. ã = 2, s = ã/2.

The labels on the robustness curves in fig. 2 demonstrate that the curves will cross each other
for any choice of parameter values obeying the specified constraints on the coefficients. This cross-
ing of the robustness curves implies the potential for a reversal of preference between the designs,
which bears directly on the distinction between robust satisficing and outcome-optimizing, as dis-
cussed at the end of section 2.1: The design that is predicted to be best is not necessarily the most
robust against uncertainty for satisfying a specified requirement.

The crossing of the robustness curves in fig. 2 results from the greater vulnerability of BIS (due
to the finite isolation gap size), and not from greater uncertainty in the performance of the BIS
design. We see this in fig. 1, where the recovery-time curves cross even for the nominal, design-
base values of the coefficients. That is, BIS is predicted to be worse than SRS at large load, not
due to uncertainty, but due to the inherent vulnerability of BIS.

Nonetheless, the crossing of the robustness curves in fig. 2 does result from uncertainty, namely,
from exogenous uncertainty in the load. Let a× denote the load level in fig. 1 at which the putative
TTR curves cross. If we knew that the true load were less than a×, then we would know that BIS
would have lower recovery time than SRS. BIS recovers more quickly than SRS if the true load is
less than a×, and BIS recovers more slowly otherwise.

This implies that the robustness of BIS to load-uncertainty is either greater, or less, than the ro-
bustness of SRS, depending on the critical recovery time, tc. Uncertainty in the load (not uncertainty
in BIS) can, at large enough load-deviation, exploit the greater vulnerability of BIS at large load. The
properties of the BIS design are not more uncertain than properties of the SRS (in this example).
However, BIS has greater vulnerability than SRS that can be activated at unexpectedly large load.

The intersection between the robustness curves in fig. 2 entails a reversal of preference between
the two design options, and demonstrates the difference between robust satisficing and outcome-
optimizing, as we now explain.

The outcome-optimizer will use the best available models to estimate the TTR’s for each design
at the best estimate of the load, which we denote tq(ã). The outcome-optimizer will choose the
design for which this TTR estimate is lowest. Design q is preferred over design q′ by the outcome-
optimizer if:

tq(ã) < tq′(ã) (8)
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The robust satisficer will choose the design with greater robustness against uncertainty, for sat-
isfying the performance requirement. Design q is preferred over design q′ by the robust-satisficer
if:

ĥq(tc) > ĥq′(tc) (9)

These designers are optimizing different functions: one optimizes the predicted outcome, the other
optimizes the robustness against uncertainty for attaining acceptable outcome.

Let t× denote the value on the tc axis of fig. 2 at which the robustness curves cross one another.
The two design methods will agree on the design (but for different reasons) if and only if tc < t×.

We can also understand that the robust satisficing method is different from what is often called
“min-max”, namely, minimizing the worst anticipated outcome. Let h× denote the value on the
vertical robustness axis of fig. 2 corresponding to t×. The min-maxer starts by identifying a worst
case. In the present context that can be understood as choosing the greatest horizon of uncertainty
of the load, call this hmax. The min-maxer will choose the design whose worst outcome at uncertainty
hmax is lowest. As explained in appendix A, the horizontal axis of fig. 2 is the greatest TTR for the
corresponding horizon of uncertainty on the vertical axis. We see from fig. 2 that the min-maxer will
choose BIS (q = 1) if the greatest horizon of uncertainty is less than h×, because for this range of
uncertainty BIS has lower TTR. The min-maxer will choose SRS otherwise.

The robust satisficer, as we have explained, will choose the design whose robustness for re-
quirement tc is greatest. The robust satisficer and the min-maxer may either agree or disagree on
the design. For example, suppose the min-maxer assumes that the horizon of uncertainty cannot
be greater than 3 in fig. 2. The min-max design is SRS (q = 0) whose worst-case TTR is less than
for BIS at this horizon of uncertainty. Suppose the critical TTR for the robust satisficer is tc = 2.
Then, even if the robust satisficer agrees that the uncertainty could be as large as 3, or even more,
the robust satisficer will disagree with the min-maxer and will prefer BIS (q = 1) because it is more
robust at this performance requirement. But if the robust satisficer views a larger tc as acceptable,
in fact, any value greater than t×, then the robust satisficer will prefer SRS (q = 0) and thus agree
with the min-max, though for different reasons.

2.3 Time to Recovery with Inherent Uncertainty

We now consider a simple example of robustness analysis for selecting between two designs, given
inherent uncertainty in those designs. One design is the State of the Art (SotA) and the other is New
and Innovative (NaI). (One could consider the distinction between SotA and NaI as a generalization
of the distinction between SRS and BIS, respectively.) The SotA design is the current best practice,
while the NaI purports to provide even better performance. While NaI is responsibly considered a
legitimate design option, it nonetheless is accompanied with greater inherent uncertainty because
of its newness: less experience has accumulated with NaI than with SotA. We are considering the
inherent uncertainty in these design alternatives.

Let the system model continue to be Time to Recovery (TTR) after an adverse event of severity
a, with the following estimated TTR functions for the two designs, where SotA is denoted by q = 0

and NaI by q = 1:

t̃q(a) =

{
0 if a < βq

α(a− βq)
2 else

(10)

Assume that β1 > β0 > 0 and α > 0. Note that the estimated TTR for the SotA (q = 0) is longer than
for the NaI for all loads greater than β0.
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The event severity is not uncertain and is known to equal ã, where ã > β1. However, the
true recovery-time functions, tq(a), are fractionally uncertain, so the info-gap model of inherent
uncertainty of each system is:

Uq(h) =
{
tq(a) : tq(a) ≥ 0,

∣∣tq(a)− t̃q(a)
∣∣ ≤ hwq t̃q(a)

}
, h ≥ 0, q = 0, 1 (11)

This info-gap model is an unbounded family of nested sets of TTR functions for design q, tq(a) for
all values of a, and reflects the uncertain shape of these functions. Each wq is known and positive
and w1t̃1(ã) > w0t̃0(ã) to reflect the greater uncertainty of the NaI design.
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Figure 3: Recovery-time functions
for the example in section 2.3. α =
1, β0 = 0.5, β1 = 1.5.

Figure 4: Robustness functions for
the example in section 2.3. Same
parameters as fig. 3. ã = 3, w0 = 1,
w1 = 4.

The estimated TTR functions of eq.(10) are plotted in fig. 3 for particular choices of the coeffi-
cients, illustrating that the NaI is predicted to be less vulnerable to adverse events than the SotA
design, which will be true for any coefficients obeying the specified constraints.

As in the example of section 2.2, we require that the actual TTR not exceed the critical value tc,
eq.(5). The robustness of design q is the greatest horizon of uncertainty up to which uncertainty in
the shape of the TTR function does not jeopardize the achievement of the performance requirement.
The robustness is defined formally as:

ĥq(tc) = max

{
h :

(
max

tq(a)∈Uq(h)
tq(a)

)
≤ tc

}
(12)

which is readily shown to equal:

ĥq(tc) =
1

wq

(
tc

t̃q(ã)
− 1

)
(13)

or zero for tc values for which this is negative. Robustness curves for the two designs are plotted in
fig. 4. These curves cross one another, illustrating the potential for reversal of preference between
the design options, as explained in connection with fig. 2. Specifically, the performance-optimizer
and the robust-satisficer may either agree, or disagree, depending on the maximum acceptable
TTR.

3 Example: Inherent and Exogenous Uncertainty

In this section we present a numerical example that compares robustness of seismic resilience
properties of an SRS (q = 0) and a BIS (q = 1), under both inherent and exogenous uncertainties.
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Figure 5: Loss-of-functionality functions. SRS (solid); BIS (dashed).
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Figure 6: Time to recovery as a function of the loss of functionality.

We use simple models that roughly describe the loss of functionality and the time to recovery of
these two structures. Various numerical approaches have been proposed to predict the loss of
functionality and the time to recovery; see, e.g., [13, 21, 41, 44]. Any approach can be adopted in
the framework presented below. The purpose of the present analysis is not to explore the properties
of a specific dynamic model, but to explore the modelling and management of uncertainty in any
model that one might use. It should also be clear that we use an SRS and a BIS just to illustrate
the application and the implication of the proposed method. The proposed method is generic, and
hence can be used to compare the resilience performance of any structures, as far as a method
for predicting a recovery-time function is available. For instance we can compare two different BIS
designs. Also, structural systems other than SRS and BIS can be considered.

The robustness analysis can be performed in the same manner as sections ttr in vul ex unc and
ttr inh unc, although in this section we address exogenous and inherent uncertainties simultane-
ously. The procedure of the analysis is summarized as follows.

1. Prepare the recovery-time functions of the structures under consideration. Any existing meth-
ods can be adopted for this purpose. In the following, we assume that the time to recovery is
obtained as a function of the loss of functionality, and the loss of functionality is obtained as a
function of the response acceleration. Therefore, the time to recovery can be represented as
a function of the response acceleration.

2. Construct the info-gap model(s) of uncertain parameter(s) and/or uncertain function(s). In this
section, we assume that the response acceleration, the loss-of-functionality function, and the
time-to-recovery function are uncertain, and construct their info-gap models.
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Figure 7: Estimated time to recovery as a function of the seismic load amplitude. SRS (solid); BIS
(dashed).

3. Compute the robustness function to see its variation with respect to the critical recovery time.

4. Compare the obtained curves of the two structures to interpret the robustness preference.

Consider two designs, an SRS and a BIS. Let A denote the response acceleration of a structure
subjected to seismic loading. We use ℓq(A) to denote the loss of functionality due to the seismic
damage, for q = 0, 1, where ℓq(A) ∈ [0, 1] (∀A ≥ 0) as shown in fig. 5. The value ℓq(A) = 0

means that the structure suffers no damage, while ℓq(A) = 1 means functionality of the structure is
completely lost. We assume that ℓq(A) is a monotonically increasing function. Several numerical
approaches, e.g., a scenario-based performance assessment [21], are available to estimate ℓq(A).
The numerical results obtained by any approach can be adopted, as long as ℓq(A) is monotonically
increasing with respect to A.

As mentioned in section 2.1, an SRS suffers damage even at low loads, compared with a BIS.
In contrast, almost no damage is accumulated in a BIS, as long as the base-isolation system works
properly. At large load, a BIS undergoes pounding, which causes severe damage. In fig. 5, we
assume that damage of the BIS increases discontinuously at the minimum response acceleration
level that induces pounding. The slope of the loss of functionality after this level is larger than that
of the SRS, because the superstructure of a BIS is less stiff than an SRS.

Let Ã denote the estimate of the response acceleration. Since the seismic loading has un-
certainty, the true response acceleration can deviate from Ã. In a manner similar to eq.(6), this
uncertainty is represented by the following info-gap model:

A(h) =

{
A : A ≥ 0,

∣∣∣∣∣
A− Ã

wA

∣∣∣∣∣ ≤ h

}
(14)

Here, wA > 0 is a constant. The loss of functionality cannot be predicted only from A, because it
could depend on many factors, including the dominant period and duration of earthquake excitation,
unknown seismic properties of nonstructural components, etc. Therefore, for given A, the shape
of the function ℓq(A) has uncertainty. In a manner similar to eq.(11), this functional uncertainty is
represented by the following info-gap model:

Lq(h) =

{
ℓq(A) : 0 ≤ ℓq(A) ≤ 1,

∣∣∣∣∣
ℓq(A)− ℓ̃q(A)

wℓ,q

∣∣∣∣∣ ≤ hℓ̃q(A)

}
, q = 0, 1 (15)

where ℓ̃q(A) is the estimate of ℓq(A), and wℓ,0 and wℓ,1 are positive constants.
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For a given loss of functionality, ℓ, let t(ℓ) denote the time to recovery. We assume that t is a
monotonically increasing function. Also, we assume t(0) = 0, i.e., no damage means zero recovery
time, and t(1) = ∞, i.e., complete loss of functionality means incapability of recovery. An example
of t is shown in fig. 6. Any function satisfying the assumptions above, that might be obtained from
a numerical approach to assess the time to recovery, can be adopted in our framework. Here, we
assume a simple form for the estimated TTR function:

t̃(ℓ) = −κ ln(1− ℓ) (16)

where κ > 0 is a constant. As mentioned in the literature [13, 21, 41], it is very difficult to predict the
time to recovery. In other words, even if the loss of functionality ℓq(A) were known, the shape of the
function t(ℓq(A)) still possesses large uncertainty. This uncertainty is represented by:

T (h) =

{
t(ℓ) : t(ℓ) ≥ 0,

∣∣∣∣∣
t(ℓ)− t̃(ℓ)

wt

∣∣∣∣∣ ≤ ht̃(ℓ)

}
(17)

where t̃(ℓ) is the estimated function and wt > 0 is a constant. For a given response acceleration,
A, the estimated time to recovery for the two designs are given as t̃(ℓq(A)) (q = 0, 1), as shown in
fig. 7.

The robustness function is defined formally as:

ĥq(tc) = max




h :




max
t(ℓq(A))∈T (h)
ℓq(A)∈Lq(h)

A∈A(h)

t(ℓq(A))




≤ tc





(18)

For given h ≥ 0, define A⋆(h), ℓ⋆q(h), and t⋆q(h) by:

A⋆(h) := max{A : A ∈ A(h)} (19)

ℓ⋆q(h) := max{ℓq(A) : ℓq(A) ∈ Lq(h), A ∈ A(h)} (20)

t⋆q(h) := max{t(ℓq(A)) : t(ℓq) ∈ T (h), ℓq(A) ∈ Lq(h), A ∈ A(h)} (21)

It follows from the definitions of the info-gap models A, Lq, and T (in eqs.(14), (15), and (17)) and
the monotonicity of ℓ̃q(A) and t̃(ℓ) that the inner maximization in eq.(18) can be solved as:

A⋆(h) = Ã+ wAh (22)

ℓ⋆q(h) = min{1, (1 + wℓ,qh)ℓ̃q(A
⋆(h))} (23)

t⋆q(h) = (1 + wth)t̃(ℓ
⋆
q(h)) (24)

By using eqs.(22)–(24), we can compute ĥq(tc) in eq.(18) in a manner similar to section 2.3.
For numerical examples we set Ã = 4m/s2 and wA = 0.1Ã in eq.(14), and κ in eq.(16) is

chosen so that t(1/2) = 3/4 year. As for the values of (wℓ,0, wℓ,1, wt), we consider three cases:
(wℓ,0, wℓ,1, wt) = (0.02, 0.02, 0.05), (0.02, 0.02, 0.5), and (0.01, 0.05, 0.05), representing different levels
of relative uncertainty of ℓ0(A), ℓ1(A) and t(ℓ).

Robustness curves for the two designs are shown in fig. 8. In each case, the two curves cross
one another. Fig. 8(b) represents much larger uncertainty in the estimate of time to recovery, t(ℓ),
than fig. 8(a). As a result, the value of tc at which the two curves cross, denoted t×, is larger in 8(b)
than in 8(a). Consequently, the BIS (dashed) is preferable to the SRS (solid) over a broader range
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Figure 8: Robustness functions for the example in section 3. SRS (solid); BIS (dashed).
(a) (wℓ,0, wℓ,1, wt) = (0.02, 0.02, 0.05); (b) (wℓ,0, wℓ,1, wt) = (0.02, 0.02, 0.5); (c) (wℓ,0, wℓ,1, wt) =
(0.01, 0.05, 0.05).

of the critical values for the time to recovery in fig. 8(b) than in fig. 8(a). In other words, the SRS
is preferable to the BIS only when a large time span is allowed for recovery, fig. 8(b). In fig. 8(a),
reversal of the preference between SRS and BIS occurs at a smaller value of the time span than in
fig. 8(b).

In fig. 8(c) the uncertainty weights wℓ,0 and wℓ,1 reflect the relatively greater uncertainty of ℓ1(A)
for the BIS (a rather innovative system), as compared against ℓ0(A) for the SRS (a state of the art
system). As a result, t× becomes slightly smaller than in fig. 8(a), i.e., the SRS (solid) is preferable
to the BIS over a slightly broader range of recovery times in fig. 8(c).

It is possible to increase the value of the response acceleration, A, at which pounding of the
BIS occurs by increasing the isolation gap. It is important to note that increasing the isolation gap
usually requires additional cost. In fig. 9(a), we assume that the isolation gap is wider than in fig. 5.
The loss of functionality of the SRS is the same as in fig. 5. Robustness functions are shown in
fig. 9(b). Compared with fig. 8(a), the value of t× in fig. 9(b) is larger. Namely, with additional cost of
the building, the BIS (dashed) becomes preferable over a broader range of the critical values for the
time to recovery. Another issue that one may need to take into account is that, when the response
acceleration is very large, it might possibly happen that deformations of the isolators of the BIS
exceed the assumed values. If this is the case, the isolators undergo plastic deformations, and the
loss of functionality might possibly increase for this reason. Therefore, increase of the isolation gap
does not necessarily simply increase of robustness of the BIS. For simplicity, the discussion above
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Figure 9: Robustness analysis for the example in section 3 with larger isolation gap. (a) Estimated
loss-of-functionality functions; (b) robustness curves with (wℓ,0, wℓ,1, wt) = (0.02, 0.02, 0.05). SRS
(solid); BIS (dashed).

is restricted to the case in which deformations of the isolators do not exceed the allowable amount.

4 Preference Reversal with Inherent and Exogenous Uncertainty

We now explore a generalization of the example in section 3 with inherent and exogenous un-
certainty. We prove a proposition asserting conditions under which the robustness curves for two
different designs will cross one another. This crossing of robustness curves entails the potential for
reversal of preference between the two designs. Reversal of preference is the basis for the distinc-
tion between info-gap robust satisficing and both prediction-based performance optimization and
min-max.

We discussed the design and decision implications of crossing robustness curves in connection
with figs. 8 and 9. In particular, we explained that the robust preference of one design (e.g. BIS)
over another (e.g. SRS) depends on the performance requirement. The info-gap robust satisficing
methodology leads the designer to choose the option that is more robust against uncertainty, for
achieving a specified performance requirement. Consequently, when the robustness curves for two
design alternatives cross one another, the preference between them depends on the performance
requirement. The resulting design decision may differ from both the outcome-optimization and the
min-max decisions, as discussed in section 2.2. The proposition in this section demonstrates a
degree of prevalence and generality of this phenomenon of preference reversal.

Consider two alternative system designs, denoted by q = 0 and q = 1, where these could
for example denote the SRS and BIS designs, respectively. The estimated response acceleration,
loss-of-functionality (LOF) function, and time to recovery (TTR) function are Ã, ℓ̃q(A) and t̃(ℓ), re-
spectively. Uncertainty in these functions is represented by the info-gap models of eqs.(14), (15)
and (17). We do not assume the estimated functional form in eq.(16). However, we do assume that
the uncertainty weights in the info-gap model of eq.(15) obey:

wℓ,1 ≥ wℓ,0 (25)

which implies greater uncertainty for functions ℓ1 than for functions ℓ0.
We assume that the estimated TTR and LOF functions obey the following relations for all re-
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sponse accelerations A ≥ 0 and for both q values. As is a specific value exceeding Ã:

ℓ̃1(Ã) < ℓ̃0(Ã) (26)

ℓ̃1(A) > ℓ̃0(A) if As ≤ A (27)

ℓ̃q(A) < ℓ̃q(A
′) if A < A′ (28)

t̃(ℓ) < t̃(ℓ′) if ℓ < ℓ′ (29)

Eq.(26) states that the estimated LOF, at the estimated response acceleration, is lower for system
1 than for system 0. In contrast, eq.(27) states that the estimated LOF for system 1 is greater than
for system 0 at large accelerations. In other words, eq.(26) states that system 1 is predicted to
be less vulnerable than system 0 at the estimated load, but eq.(27) states that system 1 is more
vulnerable at large loads. That is, these equations express different vulnerabilities of these two
systems. Eqs.(26) and (27) describe the curves in fig. 5. Eq.(28) asserts that estimated LOF func-
tions are monotonically increasing. Eq.(29) asserts that the estimated TTR functions are monotonic,
reflecting the situation in fig. 6.

Note that we have not assumed that the actual LOF or TTR functions ℓq or t (as distinct from the
estimated functions ℓ̃q or t̃) are monotonic. This is a physically reasonable assumption but we do
not need it in order to prove proposition 1.

The performance requirement is that the TTR does not exceed a critical value:

t(ℓq(A)) ≤ tc (30)

The robustness function, ĥq(tc), is defined in eq.(18).
We can now assert the following proposition. The proof appears in Appendix B.

Proposition 1 Given:
• The estimated TTR and LOF functions, t̃(ℓ) and ℓ̃q(A), obey the conditions of eqs.(26)–(29).
• The info-gap models, A(h), Lq(h) and T (h), are specified in eqs.(14), (15) and (17) with the

further condition of eq.(25).
• The performance requirement is eq.(30).

Then: The robustness curves, defined in eq.(18), intersect one another. ĥ1(tc) exceeds ĥ0(tc) for a
low range of tc values. ĥ0(tc) equals or exceeds ĥ1(tc) at higher values of tc.

This proposition asserts that systems, with the stated vulnerabilities, display different robustness
to uncertainties (both inherent and exogenous). Specifically, the vulnerabilities and uncertainties
result in crossing robustness curves, and this causes the potential for reversal of preference between
the two designs.

5 Summary and Conclusion

All structures have various vulnerabilities to adverse events. However, evaluation of the seismic
resilience of structures inevitably encounters severe uncertainties. In particular, the time to recovery
of damaged buildings has both endogenous uncertainties (relating to the structure and its sub-
systems) and exogenous uncertainties (relating to the loads and the surroundings). It is difficult to
predict seismic responses of the structure and of nonstructural components, such as the equipment
and facilities of buildings, damage of which affect the recovery time. Moreover, it is impossible to
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predict the seismic event reliably; natural hazards have repeatedly surprised us with events sig-
nificantly more severe than historical precedents. Such uncertainty may prevent existing methods
for evaluation of the seismic resilience of structures from providing reliable results. A remedy is to
incorporate the concept of robustness against such uncertainty into the evaluation method of the
resilience.

This paper has presented a framework—info-gap robust satisficing—for evaluation of resilience
of a structural system for fully addressing such great uncertainty. The examples in sections 2 and
3 illustrate the robustness analysis. It is noteworthy that the proposed framework does not require
reliable predictions of the time to recover, the seismic responses of the structures and the non-
structural components, the seismic event, etc. Rather, it is based on the premise that they cannot
be predicted precisely. Then, the method ranks alternative structural designs in terms of their ro-
bustness against uncertainty for satisficing the requirement of resilient performance. To clarify the
generic methodology, in this paper we have consider two examples of the seismic design concepts
(i.e., the seismic resistant structure and the base-isolated structure) and have demonstrated how
the proposed framework is used to compare the two structures. The proposed framework is generic
and is applicable to any structural designs.

The proposition in section 4 establishes that, if the estimated models of two structural systems
satisfy certain conditions, then the robust preference between the designs reverses as the perfor-
mance requirement changes. The assumptions made in this proposition are rather mild. Hence,
when choosing between two structural systems, we encounter reversal of the robust preference
quite often, particularly when one of the systems is innovative and the other is classical. The pro-
posed robustness analysis method can numerically find the level of the performance requirement at
which such reversal of the robust preference occurs, and hence can assist a structural engineer to
make reliable design decision.

A Appendix: Derivation of Robustness Curves for the Example in
Section 2.2

Let mq(h) denote the inner maximum in the definition of the robustness, ĥq(tc) in eq.(7). That is,
mq(h) = max{tq(α) : α ∈ U(h)}. We see that mq(h) increases monotonically as h increases,
because the uncertainty sets U(h) in eq.(6) become more inclusive as h increases. The robustness
is the greatest h at which mq(h) ≤ tc. The monotonicity of mq(h) implies that the robustness, ĥq(tc),
is the greatest value of h at which mq(h) = tc. In other words, mq(h) is the inverse of the robustness
function:

mq(h) = tc if and only if ĥq(tc) = h (31)

This means that a plot of h vs. mq(h) is identical to a plot of ĥq(tc) vs. tc. We only need to evaluate
the functions mq(h).

For both designs, mq(h) occurs when the load is maximal: a = ã + sh. For the SRS design, t0
has been defined in eq.(3), and we find:

m0(h) = α0(ã+ sh− β0) (32)

For the BIS design, t0 has been defined in eq.(2), and we find:

m1(h) =

{
α1(ã+ sh− β1) if ã+ sh < δ1 ↔ h < δ1−ã

s

γ1(ã+ sh− δ1) + α1(δ1 − β1) else
(33)
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These inverse robustness functions are plotted in fig. 2 by plotting h on the vertical axis and mq(h)

on the horizontal axis.

B Appendix: Proof of Proposition 1

Let mq(h) denote the inner maximum in the definition of the robustness, eq.(18). The uncertainty
sets, A(h), Lq(h) and T (h), become more inclusive as the horizon of uncertainty, h, increases. This
implies that mq(h), defined as the maximum on these sets, is a monotonically increasing function of
h. From this we conclude that mq(h) is the inverse of the robustness function, ĥq(tc). That is:

mq(h) = tc if and only if ĥq(tc) = h (34)

This means that mq(h) contains all the information that ĥq(tc) contains. In other words, a plot of h
vs. mq(h) is identical to a plot of ĥq(tc) vs. tc.

Furthermore, from the discussion leading up to eq.(24), we conclude that:

mq(h) = t⋆q(h) (35)

where t⋆q(h) has been defined in eq.(21). In other words, eq.(35) is an explicit expression for the
inverse of the robustness function for each design. We must show that the functions m0(h) and
m1(h) intersect one another.

First of all, from eqs.(22)–(24):
t⋆q(0) = t̃(ℓ̃q(Ã)) (36)

Also, eqs.(26) and (29) imply:
t̃(ℓ̃1(Ã)) < t̃(ℓ̃0(Ã)) (37)

Combining eqs.(35)–(37) we conclude:

m1(0) < m0(0) (38)

Because mq(h) is the inverse of ĥq(tc), this relation implies that the robustness curve for design 1,
ĥ1(tc), sprouts off of the horizontal tc axis at a lower value than the robustness curve for design 0.
Thus ĥ1(tc) exceeds ĥ0(tc) at low values of tc.

Now consider large values of h. We must show that there is a value of h for which m1(h) reaches
or exceeds m0(h).

Referring to the value of As in eq.(27), define hs from:

Ã+ wAhs = As (39)

hs > 0 because As > Ã and wA > 0. Eq.(27) implies, for any h ≥ hs:

ℓ̃1(Ã+ wAh) > ℓ̃0(Ã+ wAh) (40)

Thus eq.(25) implies, for any h ≥ hs:

(1 + wℓ,1h)ℓ̃1(Ã+ wAh) > (1 + wℓ,0h)ℓ̃0(Ã+wAh) (41)

If either of these expressions exceed 1, then it is truncated to the value of 1 by the info-gap model,
as stated in eq.(23). We must consider 2 cases.
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Case 1. Suppose that the righthand term in eq.(41) is less than 1 for some h ≥ hs. In this case
eqs.(29) and (41) imply

(1 + wth)t̃
[
min

{
1, (1 +wℓ,1h)ℓ̃1(Ã+ wAh)

}]

︸ ︷︷ ︸
t⋆
1
(h)

> (1 + wth)t̃
[
(1 + wℓ,0h)ℓ̃0(Ã+wAh)

]

︸ ︷︷ ︸
t⋆
0
(h)

(42)

where the identification of the left and righthand terms as t⋆1(h) and t⋆0(h), respectively, results from
eq.(24). Thus, eqs.(35) and (42) imply, for this value of h:

m1(h) > m0(h) (43)

Case 2. Now suppose that the righthand term in eq.(41) equals or exceeds 1 for all h ≥ hs, in
which case both terms in eq.(41) equal or exceed 1. In this case both functions are truncated at the
value 1 and eq.(42) is an equality and we obtain, for all h ≥ hs:

m1(h) = (1 + wth)t̃(1) = m0(h) (44)

Recall that mq(h) is the inverse of the robustness function ĥq(tc). Thus eqs.(38) and either (43)
or (44) imply that the robustness curves of the two designs have intersected one another.

We note, in eq.(43) of Case 1 of this proof, that the inverse robustness curves actually cross
one another. In Case 2, in contrast, the upper bound on the LOF functions in the info-gap model of
eq.(15) can cause the intersection of the inverse robustness functions, mq(h), to occur at the point
at which they become equal, eq.(44). In this case the robustness functions intersect but do not ever
cross one another. If this trucation constraint were removed, then the robustness functions would
strictly cross one another.
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