Picking a Theory: How Hard Can That Be?

Yakov Ben-Haim

Technion

Israel Institute of Technology

 $^{^{0}}$ lectures\talks\lib\pick-theory01.tex 2.12.2015

Picking a Theory: How Hard Can That Be? pick-theory01.tex

Contents

1	Highlights and Preliminary Examples (pick-theory01.tex)	3
	1.1 1st Preliminary Example: Robotic Design (pick-theory01.tex)	19
	1.2 2nd Preliminary Example: Economic Policy Formulation(pick-theory01.tex)	31
2	Tension Between Right and Right (right-right01.tex)	42
3	Fox-Hedgehog Tension (fox-hog01.tex)	56
4	Truth-Meaning Tension (truth-meaning02.tex)	78
5	Knowledge-Ignorance Tension (knowl-ignorance02.tex)	111
6	Conclusion (pick-theory01.tex)	134
7	Questions for Discussion (pick-theory01.tex)	135

1 Highlights and Preliminary Examples

§ Sources:

Yakov Ben-Haim, 2011,

Picking a Theory is Like Building a Boat at Sea,

- $\circ http://decisions-and-info-gaps.blogspot.com$

 $/2011/12/{
m picking-theory-is-like-building-boat-at.html}$

§ Theories support decisions:

- Engineering: mechanics, control, thermodynamics....

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.
- § Theories are not unique:
 - Mechanics: Bernoulli beam or Timoshenko beam?

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.
- § Theories are not unique:
 - Mechanics: Bernoulli beam or Timoshenko beam?
 - Economics: Keynesian or Marxian?

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.
- § Theories are not unique:
 - Mechanics: Bernoulli beam or Timoshenko beam?
 - Economics: Keynesian or Marxian?
 - Environment: Many diverse IPCC models.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.
- § Theories are not unique:
 - Mechanics: Bernoulli beam or Timoshenko beam?
 - Economics: Keynesian or Marxian?
 - Environment: Many diverse IPCC models.
 - Medicine: Systems physiology or microscopic biology.

- § Theories support decisions:
 - Engineering: mechanics, control, thermodynamics....
 - Economics: micro, macro, finance, labor.
 - Environment: Climate change, conservation.
 - Medicine: physiology, biochemisty.
 - Security: game theory, psychology.
- § Theories are not unique:
 - Mechanics: Bernoulli beam or Timoshenko beam?
 - Economics: Keynesian or Marxian?
 - Environment: Many diverse IPCC models.
 - Medicine: Systems physiology or microscopic biology.
 - Security: deterrence or defense or offense?

- How to pick a theory?

- How to pick a theory?
- Who should pick the theory?

0

- How to pick a theory?
- Who should pick the theory?
- When must one change the theory?

§ Questions:

- How to pick a theory?
- Who should pick the theory?
- When must one change the theory?
- Why is picking a theory difficult?

§

- How to pick a theory?
- Who should pick the theory?
- When must one change the theory?
- Why is picking a theory difficult?
- § We will consider last question.

1.1 1st Preliminary Example: Robotic Design

• You must calculate forces to achieve robotic motion.

- You must calculate forces to achieve robotic motion.
- Choose theory for calculations:
 - \circ 1st theory assumes Axiom A:

Object comes to rest unless force acts.

- You must calculate forces to achieve robotic motion.
- Choose theory for calculations:
 - \circ 1st theory assumes Axiom A:

Object comes to rest unless force acts.

 \circ 2nd theory assumes Axiom G:

Object moves at constant velocity unless force acts.

- You must calculate forces to achieve robotic motion.
- Choose theory for calculations:
 - \circ 1st theory assumes Axiom A:

Object comes to rest unless force acts.

 \circ 2nd theory assumes Axiom G:

Object moves at constant velocity unless force acts.

 \circ Axiom A agrees with observation.

- You must calculate forces to achieve robotic motion.
- Choose theory for calculations:
 - \circ 1st theory assumes Axiom A:

Object comes to rest unless force acts.

 \circ 2nd theory assumes Axiom G:

Object moves at constant velocity unless force acts.

- \circ Axiom A agrees with observation.
- \circ Axiom G disagrees with observation.

- You must calculate forces to achieve robotic motion.
- Choose theory for calculations:
 - \circ 1st theory assumes Axiom A:

Object comes to rest unless force acts.

 \circ 2nd theory assumes Axiom G:

Object moves at constant velocity unless force acts.

- \circ Axiom A agrees with observation.
- \circ Axiom G disagrees with observation.
- Which theory should you use?

§ The axioms:

• A: Aristotle's law of inertia. Little contribution to dynamics.

• A: Aristotle's law of inertia.

Little contribution to dynamics.

• G: Galileo's law of inertia. Major contribution to dynamics.

§

• A: Aristotle's law of inertia.

Little contribution to dynamics.

- G: Galileo's law of inertia. Major contribution to dynamics.
- § Questions:
 - Why is axiom *G* fruitful?

• A: Aristotle's law of inertia.

Little contribution to dynamics.

• G: Galileo's law of inertia. Major contribution to dynamics.

§ Questions:

- Why is axiom G fruitful?
- Why choose Galileo's theory?

- A: Aristotle's law of inertia. Little contribution to dynamics.
- G: Galileo's law of inertia. Major contribution to dynamics.
- § Questions:
 - Why is axiom G fruitful?
 - Why choose Galileo's theory?
 - Why is it a difficult choice?

1.2 2nd Preliminary Example: Economic Policy Formulation

§ Economic policy formulation:

• Design market-based policy to induce firms to reduce pollution.

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory:

Firms react to consumers and other firms.

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory: Firms react to consumers and other firms.
- Pure competition: idealized (like axiom G).

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory: Firms react to consumers and other firms.
- Pure competition: idealized (like axiom G).
- Game theory: realistic (like axiom A).
§ Economic policy formulation:

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory: Firms react to consumers and other firms.
- Pure competition: idealized (like axiom G).
- Game theory: realistic (like axiom A).
- Which theory to use?

§ Economic policy formulation:

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory: Firms react to consumers and other firms.
- Pure competition: idealized (like axiom G).
- Game theory: realistic (like axiom A).
- Which theory to use?
- Why is it a difficult choice?

§ Economic policy formulation:

- Design market-based policy to induce firms to reduce pollution.
- Choose theory for policy formulation:
 - Firms face pure competition: no single firm sets price.
 - Agent-based game theory: Firms react to consumers and other firms.
- Pure competition: idealized (like axiom G).
- Game theory: realistic (like axiom A).
- Which theory to use?
- Why is it a difficult choice?
- Is this a more difficult choice than robotic expl? Why?

Highlight Summary

- § Theories underlie decisions.
- § We will not discuss how, who, or when to choose a theory.
- § We will discuss why theory-choice is difficult.

§

Highlight Summary

- § Theories underlie decisions.
- § We will not discuss how, who, or when to choose a theory.
- § We will discuss why theory-choice is difficult.
- § We will consider 4 trade offs:
 - Tension between right and right.
 - Fox-hedgehog tension.
 - Truth-meaning tension.
 - Knowledge-ignorance tension.

"Thanks to the negation sign, there are as many truths as falsehoods; we just can't always be sure which are which." Willard V. Quine

Figure 1: Willard Van Orman Quine, 1908–2000.

 $⁰_{\rm lectures \ talks \ lib \ right \ right 02.tex} 2.12.2015$

• Infinity of possible theories.

§ Too many theories:

- Infinity of possible theories.
- Hard to separate wheat from chaff.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to

Macroeconomics: An Introduction to

Competing Schools of Thought.¹

 $^{^1 \}mathrm{Snowdon},$ Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to
 - Macroeconomics: An Introduction to
 - Competing Schools of Thought.²
 - \circ Many axiomatically inconsistent theories.

 $^{^2 \}mathrm{Snowdon},$ Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to

Macroeconomics: An Introduction to

Competing Schools of Thought.³

- \circ Many axiomatically inconsistent theories.
- Many Nobel prizes.
- 0

³Snowdon, Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to Macroeconomics: An Introduction to

Competing Schools of Thought.⁴

- \circ Many axiomatically inconsistent theories.
- Many Nobel prizes.
- Extensively studied and tested.

⁴Snowdon, Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to Macroeconomics: An Introduction to Competing Schools of Thought.⁵
 - Many axiomatically inconsistent theories.
 - Many Nobel prizes.
 - \circ Extensively studied and tested.
 - \circ Seem to work in different situations.

⁵Snowdon, Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to Macroeconomics: An Introduction to Competing Schools of Thought.⁶
 - Many axiomatically inconsistent theories.
 - Many Nobel prizes.
 - \circ Extensively studied and tested.
 - \circ Seem to work in different situations.
 - Economics is complex, variable.

⁶Snowdon, Vane and Wynarczyk.

- Infinity of possible theories.
- Hard to separate wheat from chaff.
- Questions:
 - Why are many theories right sometimes?
 - Why is it hard to choose a theory?
 - \circ How to choose a theory?
- Example: A Modern Guide to Macroeconomics: An Introduction to

Competing Schools of Thought.⁷

- \circ Many axiomatically inconsistent theories.
- Many Nobel prizes.
- \circ Extensively studied and tested.
- \circ Seem to work in different situations.
- \circ Economics is complex, variable.
- \circ Economic theories use or express social values.

⁷Snowdon, Vane and Wynarczyk.

$\sim \sim \sim \sim$

- § We have considered 1 trade off:
 - Tension between right and right.
- § We now consider the 2nd trade off:
 - Fox-hedgehog tension.

3 Fox-Hedgehog Tension

^{7&}lt;sub>\lectures</sub> 10.12.2014

Figure 2: Archilochus, 680-645 BCE.

"The fox knows many things, but the hedgehog knows one big thing." Archilochus

§ 2 types of theories (and people).

- Fox-like theories:
 - Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.

- § 2 types of theories (and people).
 - Fox-like theories:
 - Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.
 - Hedgehog-like theories:
 - \circ Skip details. Focus on essentials.
 - \circ Axiom G is H-hog-like: friction deferred.

- § 2 types of theories (and people).
 - Fox-like theories:
 - \circ Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.
 - Hedgehog-like theories:
 - \circ Skip details. Focus on essentials.
 - \circ Axiom G is H-hog-like: friction deferred.
 - Difficult to choose:
 - \circ Include all relevant aspects (fox).

- § 2 types of theories (and people).
 - Fox-like theories:
 - \circ Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.
 - Hedgehog-like theories:
 - \circ Skip details. Focus on essentials.
 - \circ Axiom G is H-hog-like: friction deferred.
 - Difficult to choose:
 - \circ Include all relevant aspects (fox).
 - Don't get bogged down in details (h-hog).

- § 2 types of theories (and people).
 - Fox-like theories:
 - \circ Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.
 - Hedgehog-like theories:
 - \circ Skip details. Focus on essentials.
 - \circ Axiom G is H-hog-like: friction deferred.
 - Difficult to choose:
 - \circ Include all relevant aspects (fox).
 - Don't get bogged down in details (h-hog).
 - Comprehensiveness vs essentialism.

- § 2 types of theories (and people).
 - Fox-like theories:
 - \circ Comprehensive. All relevant details.
 - \circ Axiom A is fox-like: friction included.
 - Hedgehog-like theories:
 - \circ Skip details. Focus on essentials.
 - \circ Axiom G is H-hog-like: friction deferred.
 - Difficult to choose:
 - \circ Include all relevant aspects (fox).
 - Don't get bogged down in details (h-hog).
 - Comprehensiveness vs essentialism.
 - What are criteria for choosing?

§ Possible resolution for fox-h-hog tension: Weigh context, goals, meaning of decision.

§

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion. $_{\circ}$

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

• Laws of nature are

— Analytic (micro), reductionist. Eg quarks, muons.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

 \circ Laws of nature are

— Analytic (micro), reductionist. Eg quarks, muons.

— Universal, stable.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

 \circ Laws of nature are

— Analytic (micro), reductionist. Eg quarks, muons.

- Universal, stable.
- Objective, falsifiable.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

 \circ Laws of nature are

— Analytic (micro), reductionist. Eg quarks, muons.

- Universal, stable.
- Objective, falsifiable.

• Meanings are not inherent.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - \circ Context dependent. Eg:

Sanctity of life vs euthanasia in terminal illness.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - \circ Context dependent. Eg:

Sanctity of life vs euthanasia in terminal illness.

• Patterns of history are:

— Synthetic, aggregated. Hi dimensional relations.
Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - Context dependent. Eg: Sanctity of life vs euthanasia in terminal illness.
 - Patterns of history are:
 - Synthetic, aggregated. Hi dimensional relations.
 - Evolving.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - Context dependent. Eg: Sanctity of life vs euthanasia in terminal illness.
 - Patterns of history are:
 - Synthetic, aggregated. Hi dimensional relations.
 - Evolving.
 - Subjective, difficult to falsify.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - Context dependent. Eg: Sanctity of life vs euthanasia in terminal illness.
 - Patterns of history are:
 - Synthetic, aggregated. Hi dimensional relations.
 - Evolving.
 - Subjective, difficult to falsify.
 - Meanings are ambiguous, complex.

Weigh context, goals, meaning of decision.

- § Why is this difficult?
 - Consider Sci & Engr vs Humanities.
 - Sci & Engr: study of relation and form.
 - \circ Math eqs are generic.

Eg: same eq. for heat conduction or diffusion.

- \circ Laws of nature are
 - Analytic (micro), reductionist. Eg quarks, muons.
 - Universal, stable.
 - Objective, falsifiable.
- Meanings are not inherent.
- Humanities: study of meaning.
 - \circ Context dependent. Eg:

Sanctity of life vs euthanasia in terminal illness.

- Patterns of history are:
 - Synthetic, aggregated. Hi dimensional relations.
 - Evolving.
 - Subjective, difficult to falsify.
- Meanings are ambiguous, complex.
- § Motivates next trade off.

$\sim \sim \sim \sim$

- § We have considered 2 trade offs:
 - Tension between right and right.
 - Fox-hedgehog tension.
- § We now consider the 3rd trade off: truth-meaning tension.

4 Truth-Meaning Tension

^{7\}lectures\talks\lib\truth-meaning02.tex 21.12.2015

Figure 3: John Dewey, 1859-1952.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.
 - Statements can be true or false. E.g. "Archilochus was a Japanese belly dancer." Meaningful but false.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.
 - Statements can be true or false. E.g. "Archilochus was a Japanese belly dancer." Meaningful but false.
 - What is "meaning"?

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.
 - Statements can be true or false. E.g. "Archilochus was a Japanese belly dancer." Meaningful but false.
 - What is "meaning"?
 - "Meaning" is broader than "truth".
 - All true statements mean something.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.
 - Statements can be true or false. E.g. "Archilochus was a Japanese belly dancer." Meaningful but false.
 - What is "meaning"?
 - "Meaning" is broader than "truth".
 - All true statements mean something.
 - \circ Not all meaningful statements are true.

- § Meaning and truth.
 - Theories are made of statements. E.g. axioms A and G.
 - Statements have meaning.
 - Statements can be true or false. E.g. "Archilochus was a Japanese belly dancer." Meaningful but false.
 - What is "meaning"?
 - "Meaning" is broader than "truth".
 - All true statements mean something.
 - \circ Not all meaningful statements are true.
 - Statements can be

meaningful but neither true nor false.

§ Meaning:

• Kids learn meanings from experience: Cookie, mom, love, good, bad.

§ Meaning:

- Kids learn meanings from experience: Cookie, mom, love, good, bad.
- We learn by:
 - Pointing: This is a cookie.

§ Meaning:

- Kids learn meanings from experience: Cookie, mom, love, good, bad.
- We learn by:
 - Pointing: This is a cookie.
 - Experiencing the meaning of love,

or of being good or bad (or cookie).

§ Truth is different from meaning.

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."

Ο

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and

- § Truth is different from meaning.
 - John Dewey wrote that
 "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example:

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.
 - Statements can be meaningful but neither true nor false.

- § Truth is different from meaning.
 - John Dewey wrote that
 "truths are but one class of meanings,"
 those "in which
 verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.
 - Statements can be meaningful but neither true nor false.
 - Axiom G is unverifiable, unfalsifiable & meaningful.

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.
 - Statements can be meaningful but neither true nor false.
 - Axiom G is unverifiable, unfalsifiable & meaningful.
 - **Dewey:** Greek civilization was

neither true nor false, but very meaningful.

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.
 - Statements can be meaningful but neither true nor false.
 - Axiom G is unverifiable, unfalsifiable & meaningful.
 - **Dewey:** Greek civilization was neither true nor false, but very meaningful.
 - Advice: 'Be happy; don't worry.' 'Marry Shulamit.' Is very meaningful but neither true nor false.

- § Truth is different from meaning.
 - John Dewey wrote that "truths are but one class of meanings," those "in which verifiability ... is part of their meaning."
 - A true statement can be:
 confirmed by experience, and
 understood by experience.
 - Example: "All motion has friction."
 - \circ This can be verified (or falsified).
 - \circ What 'friction' means is in the test or application.
 - Statements can be meaningful but neither true nor false.
 - Axiom G is unverifiable, unfalsifiable & meaningful.
 - **Dewey:** Greek civilization was neither true nor false, but very meaningful.
 - Advice: 'Be happy; don't worry.' 'Marry Shulamit.' Is very meaningful but neither true nor false.
 - **Demands:** 'Workers Unite!' 'Bring my slippers!' Are very meaningful but neither true nor false.

§ Question: Why is theory-selection hard?

- § Question: Why is theory-selection hard?• Select theory for decision making.
 - Tension between meaning and truth.

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.
 - Theory's meaning must fit decision context.

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.
 - Theory's meaning must fit decision context.
 - Hedgehogs say: Get meaning and implication right.

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.
 - Theory's meaning must fit decision context.
 - Hedgehogs say: Get meaning and implication right.
 - The difficulty:

Should we use a theory that is

relevantly meaningful but untestable or even wrong?

- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.
 - Theory's meaning must fit decision context.
 - Hedgehogs say: Get meaning and implication right.
 - The difficulty:

Should we use a theory that is relevantly meaningful but untestable or even wrong?

- Related to fox-hedgehog tension:
 - \circ Fox's many truths hide the meaning.
- § Question: Why is theory-selection hard?
 - Select theory for decision making. Tension between meaning and truth.
 - Decision has implications (meaning):
 - \circ What does it mean to do this or that?
 - \circ 'JFK blockades Cuba' has implications.
 - Theory's meaning must fit decision context.
 - Hedgehogs say: Get meaning and implication right.
 - The difficulty:

Should we use a theory that is

relevantly meaningful but untestable or even wrong?

- Related to fox-hedgehog tension:
 - \circ Fox's many truths hide the meaning.
 - \circ H-hog's idealized theory may be false or untestable.

$\sim \sim \sim \sim$

- § We have considered 3 trade offs:
 - Tension between right and right.
 - Fox-hedgehog tension.
 - Truth-meaning tension.
- § We now consider the 4th trade off: knowledge-ignorance tension.

5 Knowledge-Ignorance Tension

 $⁷_{\rm lectures talks lib knowl-ignorance 02.tex} 16.12.2015$

- Theory used for decision making.

§ Knowledge and ignorance:

- Theory used for decision making.
- Theory is based on knowledge.

- **§ Knowledge and ignorance:**
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)

- Theory used for decision making.
- Theory is based on knowledge.
- Ignorance vast; knowledge grows. (Wheeler's island)
- Thus theory should accommodate
 - current ignorance.

- Theory used for decision making.
- Theory is based on knowledge.
- Ignorance vast; knowledge grows. (Wheeler's island)
- Thus theory should accommodate
 - current ignorance.
 - new knowledge.

- **§ Knowledge and ignorance:**
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)
 - Thus theory should accommodate
 - current ignorance.
 - new knowledge.
 - Important special case:

theory used for gaining new knowledge.

- § Knowledge and ignorance:
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)
 - Thus theory should accommodate
 - current ignorance.
 - new knowledge.
 - Important special case:

theory used for gaining new knowledge.

 \circ E.g. design experiment or measurement system.

- **§ Knowledge and ignorance:**
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)
 - Thus theory should accommodate
 - current ignorance.
 - new knowledge.
 - Important special case:
 - theory used for gaining new knowledge.
 - \circ E.g. design experiment or measurement system.
 - E.g. design adaptive learning algorithm.

- Theory used for decision making.
- Theory is based on knowledge.
- Ignorance vast; knowledge grows. (Wheeler's island)
- Thus theory should accommodate
 - current ignorance.
 - new knowledge.
- Important special case:

- \circ E.g. design experiment or measurement system.
- E.g. design adaptive learning algorithm.
- Theory is based on knowledge.
- 0

- Theory used for decision making.
- Theory is based on knowledge.
- Ignorance vast; knowledge grows. (Wheeler's island)
- Thus theory should accommodate
 - current ignorance.
 - new knowledge.
- Important special case:

- \circ E.g. design experiment or measurement system.
- \circ E.g. design adaptive learning algorithm.
- Theory is based on knowledge.
- Using a theory to gain new knowledge is like:

- § Knowledge and ignorance:
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)
 - Thus theory should accommodate
 - current ignorance.
 - new knowledge.
 - Important special case:

- \circ E.g. design experiment or measurement system.
- E.g. design adaptive learning algorithm.
- Theory is based on knowledge.
- Using a theory to gain new knowledge is like:
 - Putting the accused on his own jury.

- **§ Knowledge and ignorance:**
 - Theory used for decision making.
 - Theory is based on knowledge.
 - Ignorance vast; knowledge grows. (Wheeler's island)
 - Thus theory should accommodate
 - current ignorance.
 - new knowledge.
 - Important special case:

- \circ E.g. design experiment or measurement system.
- E.g. design adaptive learning algorithm.
- Theory is based on knowledge.
- Using a theory to gain new knowledge is like:
 - Putting the accused on his own jury.
 - Building a boat at sea.

§ Expl. Independence axiom in decision theory: Y or N?
• Independence of irrelevant alternatives.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - You now choose fish.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - You now choose fish.
 - You have violated independence axiom.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - \circ You now choose fish.
 - You have violated independence axiom.
 - New info: when server mentioned beef:
 - \circ Your doc said: reduce cholesterol.
 - \circ Your wife said: eat fish-oil vitamins.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - \circ You now choose fish.
 - You have violated independence axiom.
 - New info: when server mentioned beef:
 - \circ Your doc said: reduce cholesterol.
 - \circ Your wife said: eat fish-oil vitamins.
 - Hence: Beef least preferred but now switch to fish.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - \circ You now choose fish.
 - You have violated independence axiom.
 - New info: when server mentioned beef:
 - \circ Your doc said: reduce cholesterol.
 - \circ Your wife said: eat fish-oil vitamins.
 - \circ Hence: Beef least preferred but now switch to fish.
 - **Pro/Con** for the independence axiom:
 - \circ **Pro:** IA applies with all relevant info.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - \circ You now choose fish.
 - You have violated independence axiom.
 - New info: when server mentioned beef:
 - \circ Your doc said: reduce cholesterol.
 - \circ Your wife said: eat fish-oil vitamins.
 - \circ Hence: Beef least preferred but now switch to fish.
 - **Pro/Con** for the independence axiom:
 - \circ Pro: IA applies with all relevant info.
 - Con: new info appears unexpectedly.

- § Expl. Independence axiom in decision theory: Y or N?
 - Independence of irrelevant alternatives.
 - Used in many decision theories. E.g. von Neumann-Morgenstern expected utility.
 - Dinner: Server offers chicken or fish. You pick c'ken.
 - Server returns and offers also beef.
 - \circ You now choose fish.
 - You have violated independence axiom.
 - New info: when server mentioned beef:
 - \circ Your doc said: reduce cholesterol.
 - \circ Your wife said: eat fish-oil vitamins.
 - \circ Hence: Beef least preferred but now switch to fish.
 - **Pro/Con** for the independence axiom:
 - \circ **Pro:** IA applies with all relevant info.
 - Con: new info appears unexpectedly.
 - Hard judgment in selecting decision theory: Centrality of ignorance and new info.

6 Conclusion

- § Theories underlie decisions.
- § We didn't discuss how, who or when to choose a theory.
- § We discussed why theory-choice is hard.
- § We considered 4 trade offs:
 - Tension between right and right.
 - Fox-hedgehog tension.
 - Truth-meaning tension.
 - Knowledge-ignorance tension.

7 Questions for Discussion

- § What theories are used in your field?
 - What underlying assumptions?
 - Are there competing theories?
 - Who decides what theory to use? How?
 - Is it hard to choose?

§

- **§ What theories** are used in your field?
 - What underlying assumptions?
 - Are there competing theories?
 - Who decides what theory to use? How?
 - Is it hard to choose?
- § What fields have more (or fewer) competing theories? Why?

- § What theories are used in your field?
 - What underlying assumptions?
 - Are there competing theories?
 - Who decides what theory to use? How?
 - Is it hard to choose?
- § What fields have more (or fewer) competing theories? Why?
- § Is decision more difficult in fields with many competing theories?

§

- § What theories are used in your field?
 - What underlying assumptions?
 - Are there competing theories?
 - Who decides what theory to use? How?
 - Is it hard to choose?
- § What fields have more (or fewer) competing theories? Why?
- § Is decision more difficult in fields with many competing theories?
- § Are you a fox or a hedgehog?

§

- **§ What theories** are used in your field?
 - What underlying assumptions?
 - Are there competing theories?
 - Who decides what theory to use? How?
 - Is it hard to choose?
- § What fields have more (or fewer) competing theories? Why?
- § Is decision more difficult in fields with many competing theories?
- § Are you a fox or a hedgehog?
- § For what job would you hire a fox? A hedgehog?