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Problem Set on

Info-Gap Uncertainty

List of problems.
1 Formulate info-gap models of uncertainty, p.1 (p.8).
2 Formulate info-gap models of uncertainty, continued, p.1 (p.).
3 Some info-gap models, p.1, (p.9) .
4 Fourier expansion, p.2 (p.10).
5 Properties of ellipsoids, p.2 (p.10).
6 More info-gap models, p.3, (p.).
7 Convex info-gap models, p.3 (p.).
8 Two-counter riddle, p.4 (p.14).
9 Modification of the 3-box problem, p.4 (p.15).
10 Choose the larger number, p.6 (p.16).

1. Formulate info-gap models of uncertainty. (p.8) Formulate an info-gap model for uncer-
tainty in the cost of raw materials in each of the following scenarios. Explain your choice and
specify any additional information needed to verify your selection.

(a) The cost of raw material varies erratically throughout the year.

(b) The cost of raw material varies in a reasonably predictable manner throughout the year,
except during the summer months when large erratic fluctuations are observed.

(c) The cost of raw material varies in an unknown but gradual manner throughout the year.

(d) The cost of raw material increases in an unknown but gradual manner throughout the
year.

(e) The cost of raw material varies in a reasonably predictable manner throughout the year,
subject to occasional severe though short-lived excursions.

(f) The cost of raw material varies randomly throughout the year, where the estimated pdf
at time t is normal with mean and variance µ(t) and σ2(t). The tails of this pdf are highly
uncertain.

2. Formulate info-gap models of uncertainty, continued, (p.8) Repeat the info-gap formula-
tions in items 1a–1e where the phrase “cost of raw material” is replaced with “costs of N
different raw materials”. That is, we now consider an uncertain vector function rather than an
uncertain scalar function.

3. Some info-gap models. (p.9) Consider the following info-gap models for uncertain scalar
functions u(t) defined on the domain 0 ≤ t <∞:

Energy bound:

U1(h, ũ) =

{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]2 dt ≤ h2

}
, h ≥ 0 (1)

Uniform bound:
U2(h, ũ) = {u(t) : |u(t)− ũ(t)| ≤ h} , h ≥ 0 (2)
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(a) At any positive value of the uncertainty parameter h neither of the sets, neither U1(h, ũ)

nor U2(h, ũ), is contained in the other. For each set, find an element which it contains
and which is not contained in the other set. With these results, explain the different uses
or interpretations of these two info-gap models of uncertainty.

(b) Despite the fact that neither of the info-gap models is included in the other, there are
nonetheless an infinity of functions which belong to both. Consider the function:

u(t) = ũ(t) + e−λt (3)

where λ is a positive constant much less than unity. Show that:

u(t) ∈ U1(h, ũ) for all h ≥ 1√
2λ

(4)

u(t) ∈ U2(h, ũ) for all h ≥ 1 (5)

Note that 1√
2λ

≫ 1. What does this imply about the coherence or compatibility of this
function (u(t) in eq.(3)) with each of the info-gap models?

4. Fourier expansion. (p.10) Consider the function:

f(x) =





1, 0 < x ≤ 1
0, x = 0

−1, −1 ≤ x < 0
(6)

(a) Express f(x) as a Fourier sine series:

f(x) =
∞∑

n=1

cn sinnπx (7)

That is, find the Fourier coefficients cn. (Hint: exploit the orthogonality of the sine func-
tions.)

(b) Draw the approximation to f(x):

fK(x) =
K∑

n=1

cn sinnπx (8)

for K = 5, 10, 20, 100.

(c) Can f(x) be represented as a Fourier cosine series? Explain.

5. Properties of ellipsoids, (p.10).

(a) Draw the ellipsoid:
ax2 + by2 = 1 (9)

What are the directions and lengths of the principal axes?

(b) Draw the ellipsoid:
2x2 + 2xy + 2y2 = 1 (10)

What are the directions and lengths of the principal axes?



ps 1rk.tex PROBLEM SET ON INFO-GAP UNCERTAINTY 3

(c) Given an N -dimensional ellipsoid:
xTWx = 1 (11)

whereW is a real, symmetric, positive definite matrix. What are the directions and lengths
of the principal axes?

(Hint: start with part (c).)

6. ‡1 More info-gap models. (p.) Consider the following info-gap models for uncertain scalar
functions u(t) defined on the domain 0 ≤ t ≤ T :

Uniform bound:
U1(h, ũ) = {u(t) : |u(t)− ũ(t)| ≤ h} , h ≥ 0 (12)

Fourier ellipsoid bound:

u(t) = ũ(t) +
N∑

n=1

[
an cos

nπt

T
+ bn sin

nπt

T

]
(13)

= ũ(t) + cTφ(t) (14)

where c is the vector of uncertain Fourier coefficients and φ(t) is the corresponding vector of
cosine and sine functions. A Fourier ellipsoid bound info-gap model is:

U2(h, ũ) =
{
u(t) = ũ(t) + cTφ(t) : cT c ≤ h2

}
, h ≥ 0 (15)

(a) At any fixed positive value of the uncertainty parameter h, is one of the sets, U1(h, ũ) or
U2(h, ũ), contained in the other?

(b) Show that, at all values of the uncertainty parameter h, the following inclusion holds:

U2(h, ũ) ⊂ U1(h
√
N, ũ) (16)

where N is the number of modes in the Fourier expansion in eq.(13). What is the inter-
pretation of this inclusion? What is the significance of this constant,

√
N , which scales

the uncertainty parameter? That is, why does the scale parameter depend on the order
of the Fourier expansion?

7. ‡ Convex info-gap models. (p.) Show that the following are convex info-gap models.

Energy bound:

U(h, ũ) =
{
u(t) :

∫ ∞

0
[u(t)− ũ(t)]2 dt ≤ h2

}
, h ≥ 0 (17)

Uniform bound:
U(h, ũ) = {u(t) : |u(t)− ũ(t)| ≤ h} , h ≥ 0 (18)

Slope bound:

U(h, ũ) =
{
u(t) : u(0) = 0,

du(t)

dt
≤ h

}
, h ≥ 0 (19)

Ellipsoid bound:
U(h, ũ) =

{
u : (u− ũ)TW (u− ũ) ≤ h2

}
, h ≥ 0 (20)

1Problems marked with a double-dagger, ‡, contain more advanced material.
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where W is a real, symmetric, positive definite matrix.

Interval bound:

U(h, ũ) =
{
u :

∣∣∣∣
un − ũn
ũn

∣∣∣∣ ≤ h, n = 1, . . . , N

}
, h ≥ 0 (21)

Hint: A set S is convex if:

x ∈ S and y ∈ S implies γx+ (1− γ)y ∈ S (22)

for all γ ∈ (0, 1).

8. Two-counter riddle, (p.14) Following is a riddle posed and “solved” by Lewis Carroll2 Is his
argument correct? If not, where are his errors?

“A bag contains 2 counters, as to which nothing is known except that each is
either black or white. Ascertain their colours without taking them out of the bag.”

Answer: “One is black, and the other white.”

Solution:

“We know that, if a bag contained 3 counters, 2 being black and one white, the
chance of drawing a black one would be 2/3— and that any other state of things
would not give this chance.

“Now the chances, that the given bag contains (h) BB, (β) BW , (γ) WW , are
respectively 1/4, 1/2, 1/4.

“Add a black counter.
“Then the chances, that it contains (h) BBB, (β) BWB, (γ) WWB, are, as

before, 1/4, 1/2, 1/4.
“Hence the chance, of now drawing a black one,

=
1

4
· 1 + 1

2
· 2
3
+

1

4
· 1
3
=

2

3

“Hence the bag now contains BBW (since any other state of things would not
give this chance.

“Hence, before the black counter was added, it contained BW , i.e. one black
counter and one white.”

9. Modification of the 3-box problem. (p.15) Suppose that we have imprecise probabilistic
information about the location of the prize. Let pi be the best guess of the probability that the
prize is in the ith box, where p1 + p2 + p3 = 1 and p1 ≥ p2 ≥ p3. However, these values are
uncertain, and are constrained to the info-gap model:

P(h) =
{
(p1, p2) : pi ≥ 0, p1 + p2 ≤ 1, (p1 − p1)

2 + (p2 − p2)
2 ≤ h2

}
, h ≥ 0 (23)

P(h) is an unbounded family of sets of prior distributions. Each set contains the nominal
distribution p. The sets become more inclusive as h increases.

Given values (p1, p2, p3), we will choose the box 1 whose estimated probability is highest.

2L. Carroll 1895, Pillow Problems, Re-issued by Dover Press, New York, 1958, riddle 72.
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(a) Evaluate the robustness of this decision with respect to the uncertainty h. That is, what is
the greatest value of h (call this maximum ĥ) such that the decision is the same for any doublet
(p1, p2) ∈ P(h), if h ≤ ĥ? In other words, how much uncertainty can the decision algorithm
tolerate without altering the decision?

(b) Show that the robustness is zero when p1 = p2 = p3 = 1/3. Discuss the implications of
this for the original 3-box problem.
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10. Choose the larger number, (p.16) Two different real numbers, x1 and x2, are chosen by an
algorithm unknown to you. One of these numbers, call it xr, is revealed to you, where you
know3 that the probability that xr = x1 is 0.5. You must decide if xr is the smaller or the larger
of the two numbers.

For example, two systems have an attribute (e.g. lifetime, reliability, etc.) with values x1 and
x2, but we are able to test and estimate the attribute of only one system. We must decide if
the revealed attribute is the smaller or the larger of the two, where we have chosen the system
to test by a throw of a fair coin.

(a) Let q(y) be a pdf which is positive on all real numbers. Consider the following decision
rule:4

(a) Draw a random number, y, distributed according to q(y).

(b) If y ≥ xr then decide that xr is the smaller of the two xi.

(c) If y < xr then decide that xr is the larger of the two xi.

Show that the probability of successful decision with this rule is strictly greater than 1/2. What
is an intuitive explanation of why this algorithm works?

(b) Suppose that we have a rough guess of the pdf by which the xi are chosen. Specifically,
suppose we think they are drawn from a joint pdf which is something like p̃(x1, x2). How should
we represent the uncertainty in the pdf? How should we choose the distribution q(y) which
will be used to decide according to the algorithm in part (a)? Formulate the robustness for the
probability of successful decision with q(y).

(c) We now use the result of part (b) in a very simple special case. Suppose we know that
x1 and x2 are chosen independently from an exponential distribution, p(x) = λe−λx, x ≥ 0.
Suppose our best guess of the coefficient is λ̃ but this guess is very uncertain. Now use a
fractional-error info-gap model for uncertainty in the exponential coefficient of the pdf by which
the xi are chosen:

U(h, p̃) =
{
p(x) = λe−λx : max[0, (1− h)λ̃] ≤ λ ≤ (1 + h)λ̃

}
, h ≥ 0 (24)

Furthermore, assume that the pdf used for deciding is also exponential: q(y) = γe−γy. Derive
the robustness function (or its inverse) and explore the choice of γ.

(d) Demonstrate the decision algorithm described in part (a) by simulation. Draw N pairs of
numbers, (x1, x2), independently from a ‘generating’ pdf p(x) of your choice. Use the decision
algorithm described above with a ‘deciding’ pdf q(y) of your choice. The theoretical probability
of success for a pair (x1, x2) is Ps(x1, x2) (this was derived in part (a)). The average theoretical
probability of success, over the N draws, is:

P s =
1

N

N∑

i=1

Ps(x1, x2) (25)

3It is very important that we know the probability is equal. Otherwise, invoking the principle of indifference would lead
to a contradiction, as in the typical 2-envelope problem.

4The algorithm was proposed by Thomas M. Cover, 1987, Pick the largest number, chapter 5.1 in T. Cover and
B. Gopinath, 1987, Open Problems in Communication and Computation, Springer-Verlag, Berlin. See also:
◦ Snapp, Robert R., 2005, Tom Cover’s Number Guessing Game, http://www.cems.uvm.edu/˜snapp/teaching/ cover-

sproblem.pdf.
◦ http://blog.xkcd.com/2010/02/09/math-puzzle.
◦ Yakov Ben-Haim, 2011, Two for the Price of One: Info-Gap Robustness of the 1-Test Algorithm, 7th Intl Symp on

Imprecise Probabilities and their Applications, Innsbruck, Austria. Available at: http://info-gap.com/content.php?id=22
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The empirical probability of success, F , is the fraction of theN draws in which the q-distribution
decision algorithm decides correctly: deciding ‘smaller’ when xr is the smaller between x1 and
x2 and deciding ‘larger’ when xr is the larger between x1 and x2. Show that the empirical and
the average theoretical probabilities of success agree.

(e) Consider n systems with values x1, . . . , xn, which are all different. Suppose that m < n of
these values are revealed, with equal probabilities for each system to be revealed. Can the
algorithm of part (a) be generalized? Formulate and study the robustness of the choice of the
decision pdf.


