Lecture Notes on the Optimizer's Curse
Yakov Ben-Haim
Yitzhak Moda'i Chair in Technology and Economics
Faculty of Mechanical Engineering
Technion - Israel Institute of Technology
Haifa 32000 Israel
yakov@technion.ac.il
http://info-gap.com http://www.technion.ac.il/yakov

A Note to the Student: These lecture notes are not a substitute for the thorough study of articles and books. These notes are no more than an aid in following the lectures.

§ Sources:

- Smith, James E. and Robert L. Winkler, 2006, The optimizer's curse: Skepticism and postdecision surprise in decision analysis, Management Science, Vol. 52, No. 3, pp.311322.
- Thaler, Richard H., 1992, The Winner's Curse: Paradoxes and Anomalies of Economic Life, Princeton University Press.

Contents

1 Probabilistic Analysis 2
1.1 Formulation 2
1.2 Simple Examples 3
1.2.1 3 Zero-Mean Alternatives 3
1.2.2 n Zero-Mean Alternatives 4
1.2.3 3 Different Alternatives 5
1.3 Distribution of $\widetilde{v}_{i^{\star}}$ 6
1.4 Optimizer's Curse Theorem 8
2 Info-Gap Analysis 9
2.1 Robustness: Formulation 9
2.2 Robustness: Simple Example 10
2.3 Probability of Success and the Proxy Property 11
2.4 Proxy Property: Simple Examples 12
2.4.1 Normal Distribution 12
2.4.2 Uniform Distribution 12
2.5 Standardization and the Proxy Property 14
2.6 Coherence 16
2.7 Coherence and the Proxy Property 18

1 Probabilistic Analysis

1.1 Formulation

$\S n$ alternatives: $1, \ldots, n$.

- $v_{i}=$ Unknown true value of i th alternative. $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$.
- $\widetilde{v}_{i}=$ Known noisy estimated value of i th alternative. $\widetilde{v}=\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right)^{T}$.

§ Regret:

- Choose alternative i, expecting \widetilde{v}_{i}.
- Obtain realized outcome v_{i}.
- Regret, or disappointment: $\widetilde{v}_{i}-v_{i}$.

Positive regret if $v_{i}<\widetilde{v}_{i}$.
§ Unbiased estimates:

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i} \mid v\right)=v_{i} \tag{1}
\end{equation*}
$$

Thus, for any choice i, the expected regret is zero:

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i}-v_{i} \mid v\right)=0 \tag{2}
\end{equation*}
$$

This is because:

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i} \mid v\right)=v_{i}=\mathrm{E}\left(v_{i} \mid v\right) \tag{3}
\end{equation*}
$$

§ Outcome optimization:

$$
\begin{equation*}
i^{\star}=\arg \max _{i} \widetilde{v}_{i} \tag{4}
\end{equation*}
$$

§ Question: Is this a good, sensible strategy?
\S Expect positive regret from $\widetilde{v}_{i^{\star}}$.

- Example:
- Suppose $\mathrm{E}\left(v_{i}\right)=\mu$, a constant, for all i.
- Anticipate $\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right)>\mu$ since:
$-\widetilde{v}_{i^{\star}}$ is the maximum of n estimates.
- $\widetilde{v}_{i^{\star}}$ will tend to be on upper tail. (Example: best grade of n exams.)
- Hence $\mathrm{E}\left(\widetilde{v}_{i^{\star}}-v_{i^{\star}}\right)=\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right)-\mu>0$.
- Meaning: On average, estimated outcome optimum:
- Is over-estimate.
- Has positive regret.
- We will explore this more deeply later.

1.2 Simple Examples

§ We consider some simple examples from Smith and Winkler (2006).

1.2.1 3 Zero-Mean Alternatives

§ The true values, v_{i}, all precisely equal zero. They are not random variables.
\S The estimates, \widetilde{v}_{i}, are all $\mathcal{N}(0,1)$. See fig. 1.

Figure 1: Smith and Winkler (2006), fig. 1.
\S The mean of the distribution of $\widetilde{v}_{i^{\star}}$ is 0.85 .
(We will understand this more deeply later.)
\S Thus the average regret, $\mathrm{E}\left(\widetilde{v}_{i^{\star}}-0\right)$, is 0.85 .

More generally, suppose:

- The true values are $v_{i}=\mu$ for all i. They are not random variables.
- The estimates, \widetilde{v}_{i}, are all $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- Then $\mathrm{E}\left(v_{i^{\star}}\right)=\mu+0.85 \sigma$ which is the average regret.

1.2.2 n Zero-Mean Alternatives

§ lf:

- $v_{i}=0$ for all $i=1, \ldots, n$ (not random variable).
- $\widetilde{v}_{i} \sim \mathcal{N}(0,1)$ for all $i=1, \ldots, n$.
\S Then the regret increases as n increases. See fig. 2.
This makes sense:
- $\widetilde{v}_{i^{\star}}$ is the maximum of n estimates.
- This maximum tends to increase as n increases.

Figure 2 The Distribution of the Maximum of n Standard Normal Value Estimates

Figure 2: Smith and Winkler (2006), fig. 2.

1.2.3 3 Different Alternatives

\S The true values are $v_{i}=-\Delta, 0, \Delta$. Not random variables.
\S The estimates are unbiased normal with unit standard deviation: $\widetilde{v}_{i} \sim \mathcal{N}\left(v_{i}, 1\right)$.
§ As the alternatives become more different, we should expect $\widetilde{v}_{i^{\star}}$ to become a better bet. See fig. 3.

Figure 3 The Distribution of Maximum Value Estimates with Separation Between Alternatives

Figure 3: Smith and Winkler (2006), fig. 3.

1.3 Distribution of $\tilde{v}_{i^{\star}}$

\S In this section we derive and study the distribution of $\tilde{v}_{i^{\star}}$.

- We will understand why its mean exceeds $\mathrm{E}\left(\widetilde{v}_{i}\right)$.
- Source: DeGroot, Morris H., 1986, Probability and Statistics, 2nd ed., Addison-Wesley, Reading, MA. Section 3.2, pp.182-183.
$\S \widetilde{v}_{i}$ is the estimated value of the i th alternative.
- Its cumulative probability distribution (cpd) is $F_{i}(v)$.
- All the \widetilde{v}_{i} are statistically independent.
$\S \widetilde{v}_{i^{\star}}=\max _{i} \widetilde{v}_{i}$.
Its cpd is $G(v)$, derived as follows:

$$
\begin{align*}
G(v) & =\operatorname{Prob}\left(\widetilde{v}_{i^{\star}} \leq v\right) \tag{5}\\
& =\operatorname{Prob}\left(\widetilde{v}_{1} \leq v, \ldots, \widetilde{v}_{n} \leq v\right) \tag{6}\\
& =\prod_{i=1}^{n} F_{i}(v) \tag{7}
\end{align*}
$$

\S If the \widetilde{v}_{i} are i.i.d. with $\operatorname{cpd} F(v)$ and pdf $f(v)$ then:

$$
\begin{align*}
G(v) & =[F(v)]^{n} \tag{8}\\
g(v) & =\frac{\partial G}{\partial v}=n[F(v)]^{n-1} f(v), \quad \text { where } f(v)=\frac{\partial F}{\partial v} \tag{9}
\end{align*}
$$

\S Now compare $\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right)$ and $\mathrm{E}\left(\widetilde{v}_{i}\right)$ for i.i.d. case:

$$
\begin{align*}
\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right) & =\int v g(v) \mathrm{d} v \tag{10}\\
& =\int v n[F(v)]^{n-1} f(v) \mathrm{d} v \tag{11}\\
\mathrm{E}\left(v_{i}\right) & =\int v f(v) \mathrm{d} v \tag{12}
\end{align*}
$$

Thus:

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right)-\mathrm{E}\left(v_{i}\right)=\int v[g(v)-f(v)] \mathrm{d} v=\int v f(v)\left(n[F(v)]^{n-1}-1\right) \mathrm{d} v \tag{13}
\end{equation*}
$$

This integral is positive for $n \geq 2$, as we now explain intuitively.

Figure 4: Illustration of y_{n}.
\S Define $v^{(1)}$ as the value at which: $n\left[F\left(v^{(1)}\right)\right]^{n-1}=1$. This is also the value at which $f(v)=g(v)$. See fig. 4.

- Hence: $F\left(v^{(1)}\right)=(1 / n)^{1 /(n-1)}$.
- Note that $n[F(v)]^{n-1} \leq 1$ iff $v \leq v^{(1)}$ because $F(v)$ increases monotonically in v.
- Hence, from eq.(9), note that $g(y) \leq f(v)$ for $v \leq v^{(1)}$ as seen in fig. 4.
- Thus, since $g(v)$ is normalized, it is shifted to the right wrt $f(v)$.
- Thus, $\mathrm{E}\left(\widetilde{v}_{i^{\star}}\right) \geq \mathrm{E}\left(\widetilde{v}_{i}\right)$.

1.4 Optimizer's Curse Theorem

Theorem 1 The expected regret from the estimated optimal alternative is non-negative. Given:

- $\widetilde{v}=\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right)^{T}$ are noisy estimated values of n alternatives. These are random variables.
- The estimates are unbiased: $\mathrm{E}\left(\widetilde{v}_{i} \mid v\right)=v_{i}$.
- $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$ are true values of n alternatives.
- $i^{\star}=\arg \max _{i} \widetilde{v}_{i}$ is the index of the most favorable estimate.

Then:

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i^{\star}}-v_{i^{\star}} \mid v\right) \geq 0 \tag{14}
\end{equation*}
$$

where the expectation is with respect to \widetilde{v} conditioned on v.

Proof. Recall from eq.(4):

$$
\begin{equation*}
i^{\star}=\arg \max _{i} \widetilde{v}_{i} \tag{15}
\end{equation*}
$$

Define $i^{\prime}=\arg \max _{i} v_{i}$. Then:

$$
\begin{equation*}
\widetilde{v}_{i^{\star}}-v_{i^{\star}} \geq \widetilde{v}_{i^{\star}}-v_{i^{\prime}} \geq \widetilde{v}_{i^{\prime}}-v_{i^{\prime}} \tag{16}
\end{equation*}
$$

- The left inequality is because $v_{i^{\prime}} \geq v_{i^{\star}}$.
- The right inequality is because $\widetilde{v}_{i^{\star}} \geq \widetilde{v}_{i^{\prime}}$.

Now take expectations of eq.(16) w.r.t. \widetilde{v}, conditioned on v :

$$
\begin{equation*}
\mathrm{E}\left(\widetilde{v}_{i^{\star}}-v_{i^{\star}} \mid v\right) \geq \mathrm{E}\left(\widetilde{v}_{i^{\star}}-v_{i^{\prime}} \mid v\right) \geq 0 \tag{17}
\end{equation*}
$$

- The 0 on the right is because the estimates are unbiased: $\mathrm{E}\left(\widetilde{v}_{i^{\prime}}-v_{i^{\prime}} \mid v\right)=0$.
- Eq.(17) implies eq.(14). I

2 Info-Gap Analysis

§ Related material in "Lecture Notes on Robust-Satisficing Behavior", section 6: Probability of Success. File: lectures \backslash info-gap-methods \backslash lectures \backslash rsb02.tex.
§ Question: Since $\widetilde{v}_{i^{\star}}$ is unreliable (it has positive regret), what should we do?
§ A Potential answer. Bayesian analysis (Smith and Winkler, 2006):

- Posit prior probability for $v, p(v)$, and conditional probability for \widetilde{v} given $v, p(\widetilde{v} \mid v)$.
- Use Bayes' rule to determine posterior probability of v given $\widetilde{v}: p(v \mid \widetilde{v})$.
- Choose alternative based on posterior means, $\mathrm{E}\left(v_{i} \mid \widetilde{v}\right)$:

$$
\begin{equation*}
i^{\star}=\arg \max _{i} \mathrm{E}\left(v_{i} \mid \widetilde{v}\right) \tag{18}
\end{equation*}
$$

- Smith and Winkler (2006) show that this solution does not have the optimizer's curse!
- The problem: where do you get these pdf's?

§ A potential answer. Info-gap robust-satisficing:

- Satisfice the value: $v_{i} \geq v_{\mathrm{c}}$. (We will find the regret entering later.)
- Maximize the robustness.

§ A potential answer. Info-gap opportune-windfalling:

- Windfall the value: $v_{i} \geq v_{\mathrm{w}}$ where $v_{\mathrm{w}} \gg v_{\mathrm{c}}$.
- Maximize the opportuneness.

§ We will explore:

- Robust-satisficing.
- Proxy theorems.

2.1 Robustness: Formulation

\S Observations: known noisy estimated values of n alternatives: $\widetilde{v}=\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right)^{T}$.

§ Uncertainty:

- Unknown true values of n alternatives: $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$.
- $\mathcal{V}(h)=$ info-gap model for v. E.g.:

$$
\begin{equation*}
\mathcal{V}(h)=\left\{v:\left|\frac{v_{i}-\widetilde{v}_{i}}{s_{i}}\right| \leq h, \forall i\right\}, \quad h \geq 0 \tag{19}
\end{equation*}
$$

Or:

$$
\begin{equation*}
\mathcal{V}(h)=\left\{v:(v-\widetilde{v})^{T} S^{-1}(v-\widetilde{v}) \leq h^{2}\right\}, \quad h \geq 0 \tag{20}
\end{equation*}
$$

\S Decision: r is the decision vector. E.g.:

- A standard unit basis vector, selecting a single alternative.
- An n-vector probability distribution selecting a randomized mix of alternatives.

Performance function. Value:

$$
\begin{equation*}
q(r, v)=r^{T} v \tag{21}
\end{equation*}
$$

Performance requirement. Satisfice the value:

$$
\begin{equation*}
q(r, v) \geq q_{\mathrm{c}} \tag{22}
\end{equation*}
$$

§ Robustness:

$$
\begin{equation*}
\widehat{h}\left(r, q_{\mathrm{c}}\right)=\max \left\{h:\left(\min _{v \in \mathcal{V}(h)} r^{T} v\right) \geq q_{\mathrm{c}}\right\} \tag{23}
\end{equation*}
$$

2.2 Robustness: Simple Example

§ We evaluate the robustness, eq.(23), with the info-gap model of eq.(19).
§ Let $\mu(h)$ denote the inner minimum in eq.(23).

- $\mu(h)$ occurs when $r^{T} v$ is minimal.
- The elements of r are non-negative, so $\mu(h)$ occurs when each v_{i} is minimal:

$$
\begin{align*}
\mu(h) & =\sum_{i=1}^{n}\left(\widetilde{v}_{i}-s_{i} h\right) r_{i} \tag{24}\\
& =r^{T} \widetilde{v}-h r^{T} s \tag{25}
\end{align*}
$$

Equating this to q_{c} and solving for h yields the robustness:

$$
\begin{equation*}
\widehat{h}\left(r, q_{\mathrm{c}}\right)=\frac{r^{T} \widetilde{v}-q_{\mathrm{c}}}{r^{T} s} \tag{26}
\end{equation*}
$$

or zero if this is negative.
§ Regret. The numerator in eq.(26) is a regret:

- $r^{T} \widetilde{v}$: expected outcome.
- q_{c} : required or critical or least acceptable outcome.
- Positive regret: critical outcome lower than expectation: $r^{T} \widetilde{v}-q_{c}>0$.
- Zero regret has zero robustness. This is related to the zeroing property.
- Positive regret has positive robustness.

This is related to the trade off of robustness vs. performance.
§ Preference reversal. It is evident from eq.(26) that robustness curves of different decisions can cross one another.

2.3 Probability of Success and the Proxy Property

1

§ Probability of success:

- Define $q=r^{T} v$.
- $\mathcal{Q}(h)=$ info-gap model for uncertainty in q.
- Requirement: $q \geq q_{\mathrm{c}}$.
- $p(q \mid r)=$ pdf of q given r. This pdf is unknown.
- $P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right)=$ probability of satisfying the requirement with r :

$$
\begin{equation*}
P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right)=\operatorname{Prob}\left(q \geq q_{\mathrm{c}}\right)=\int_{q_{\mathrm{c}}}^{\infty} p(q \mid r) \mathrm{d} q \tag{27}
\end{equation*}
$$

§ Probabilistic preferences:

$$
\begin{equation*}
r_{1} \succ_{\mathrm{p}} r_{2} \text { if } P_{\mathrm{s}}\left(r_{1}, q_{\mathrm{c}}\right)>P_{\mathrm{s}}\left(r_{2}, q_{\mathrm{c}}\right) \tag{28}
\end{equation*}
$$

Robust-satisficing preferences:

$$
\begin{equation*}
r_{1} \succ_{\mathrm{r}} r_{2} \text { if } \hat{h}\left(r_{1}, q_{\mathrm{c}}\right)>\hat{h}\left(r_{2}, q_{\mathrm{c}}\right) \tag{29}
\end{equation*}
$$

§ Proxy Property:

Definition $1 \mathcal{Q}_{r}(h)$ and $P(q \mid r)$ have the proxy property at decisions r_{1} and r_{2} and critical value q_{c}, with performance function $G(r, q)$, if:

$$
\begin{equation*}
\widehat{h}\left(r_{1}, q_{\mathrm{c}}\right)>\widehat{h}\left(r_{2}, q_{\mathrm{c}}\right) \text { if and only if } P_{\mathrm{s}}\left(r_{1}, q_{\mathrm{c}}\right)>P_{\mathrm{s}}\left(r_{2}, q_{\mathrm{c}}\right) \tag{30}
\end{equation*}
$$

- The proxy property is symmetric between robustness and probability of success.
- We are particularly interested in the implication from robustness to probability.
- Thus, when the proxy property holds we will sometimes say that robustness is a proxy for probability of success.
- Sounds like a free lunch!
§ Proxy theorem: The proxy property holds if and only if the info-gap model and the probability distribution are "coherent". We will return to the idea of coherence in section 2.6.

[^0]
2.4 Proxy Property: Simple Examples

§ Before discussing coherence we examine simple examples of the proxy property, based on the simple example in section 2.2.

2.4.1 Normal Distribution

\S Let $q=r^{T} v$ be normal:

$$
\begin{equation*}
q \sim \mathcal{N}\left[r^{T} \widetilde{v},\left(r^{T} s\right)^{2} c^{2}\right] \tag{31}
\end{equation*}
$$

where $c>0$.
\S The probability of success, eq.(27), is:

$$
\begin{align*}
P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right) & =\operatorname{Prob}\left(q \geq q_{\mathrm{c}}\right) \tag{32}\\
& =\operatorname{Prob}\left(\frac{q-r^{T} \widetilde{v}}{\left(r^{T} s\right) c} \geq \frac{q_{\mathrm{c}}-r^{T} \widetilde{v}}{\left(r^{T} s\right) c}\right) \tag{33}\\
& =1-\Phi\left(\frac{q_{\mathrm{c}}-r^{T} \widetilde{v}}{\left(r^{T} s\right) c}\right) \tag{34}\\
& =1-\Phi\left(-\frac{\widehat{h}\left(r, q_{\mathrm{c}}\right)}{c}\right) \tag{35}
\end{align*}
$$

where eq.(35) results from eq.(26). $\Phi(\cdot)$ is the cpd of the standard normal variable.

§ Proxy property holds.

- From eq.(35) we see that $P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right)$ depends on r only through $\widehat{h}\left(r, q_{\mathrm{c}}\right)$.
- Hence eq.(35) implies eq.(30) and the proxy property holds.
- We only need to know that:
$\circ q$ is normal with mean $r^{T} \widetilde{v}$.
- That $c>0$. We needn't know the variance.

2.4.2 Uniform Distribution

\S Define uniform distributions as:

$$
p(y \mid a, b)=\left\{\begin{array}{cl}
\frac{1}{b-a} & \text { if } a \leq y \leq b \tag{36}\\
0 & \text { else }
\end{array}\right.
$$

\S Suppose $q=r^{T} v$ is uniform, $p(q \mid a, b)$, where:

$$
\begin{align*}
a & =r^{T} \widetilde{v}-\frac{c}{2} r^{T} s \tag{37}\\
b & =r^{T} \widetilde{v}+\frac{c}{2} r^{T} s \tag{38}
\end{align*}
$$

where $c>0$.
\S Probability of success, as in eqs.(32) and (33), is:

$$
\begin{align*}
P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right) & =\operatorname{Prob}\left(q \geq q_{\mathrm{c}}\right) \tag{39}\\
& =\operatorname{Prob}\left(\frac{q-r^{T} \widetilde{v}}{\left(r^{T} s\right) c} \geq \frac{q_{\mathrm{c}}-r^{T} \widetilde{v}}{\left(r^{T} s\right) c}\right) \tag{40}
\end{align*}
$$

§ Define:

$$
\begin{equation*}
z=\frac{q-r^{T} \widetilde{v}}{\left(r^{T} s\right) c} \tag{41}
\end{equation*}
$$

which is uniform, $p(z \mid a, b)$, with:

$$
\begin{align*}
a & =-\frac{c}{2} \tag{42}\\
b & =\frac{c}{2} \tag{43}
\end{align*}
$$

§ Now probability of success is analogous to eqs.(34) and (35):

$$
\begin{align*}
P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right) & =\operatorname{Prob}\left(z \geq \frac{q_{\mathrm{c}}-r^{T} \widetilde{v}}{\left(r^{T} s\right) c}\right) \tag{44}\\
& =1-P\left(\left.\frac{q_{\mathrm{c}}-r^{T} \widetilde{v}}{\left(r^{T} s\right) c} \right\rvert\, a, b\right) \tag{45}\\
& =1-P\left(\left.-\frac{\widehat{h}\left(r, q_{\mathrm{c}}\right)}{c} \right\rvert\, a, b\right) \tag{46}
\end{align*}
$$

where a and b are independent of r, eqs.(42) and (43).

§ Proxy property holds.

- From eq.(46) we see that $P_{\mathrm{s}}\left(r, q_{\mathrm{c}}\right)$ depends on r only through $\widehat{h}\left(r, q_{\mathrm{c}}\right)$.
- Hence eq.(46) implies eq.(30) and the proxy property holds.
- We only need to know that:
$\circ q$ is uniform with mean $r^{T} \widetilde{v}$.
- That $c>0$. We needn't know the variance.

2.5 Standardization and the Proxy Property

§ Probability of survival.

- Option i succeeds (survives) if its value is no less than the critical value:

$$
\begin{equation*}
v_{i} \geq v_{\mathrm{c}} \tag{47}
\end{equation*}
$$

- $F_{i}(\cdot)$ denotes the cumulative probability distribution function of v_{i}.
- Probability of success for option i is:

$$
\begin{equation*}
P_{\mathrm{s}}(i)=\operatorname{Prob}\left(v_{i} \geq v_{\mathrm{c}}\right)=1-F_{i}\left(v_{\mathrm{c}}\right) \tag{48}
\end{equation*}
$$

§ Standardization class of probability distributions:

Definition 2 Let q be a scalar random variable with a pdf that depends on parameters r. The pdf is standardizable and $\theta(q, r)$ is a standardization function if $\theta(q, r)$ is a scalar function which is strictly increasing and continuous in q at any fixed r and whose pdf is the same for all r.

§ Example:

- $f(q \mid r)$ is a pdf of a random variable q, where r is a vector of parameters of the pdf.
- $f(q \mid r)$ is a class of pdfs parametrized by r.
- Mean and variance of q are μ_{q} and σ_{q}^{2}. E.g. $r=\left(\mu_{q}, \sigma_{q}^{2}\right)$.
- Standardized random variable, with pdf $g(\theta)$, is:

$$
\begin{equation*}
\theta=\left(q-\mu_{q}\right) / \sigma_{q} \tag{49}
\end{equation*}
$$

- If $g(\theta)$ is independent of r then this is a standardization class. That is, if all the standardized random variables in the class have the same pdf, then this is a standardization class.
- Standardization classes are quite common:
- the normal, uniform, and exponential distributions all being examples.
- The standardized distribution $g(\theta)$ may belong to the standardization class, e.g. normal and uniform, but this is not necessarily true, e.g. the exponential.

- Example: exponential distribution:

$$
\begin{equation*}
f(q \mid r)=r \mathrm{e}^{-r q}, \quad q \geq 0 \tag{50}
\end{equation*}
$$

Moments:

$$
\begin{equation*}
\mathrm{E}(q \mid r)=\sigma(q \mid r)=\frac{1}{r} \tag{51}
\end{equation*}
$$

Standardized variable:

$$
\begin{equation*}
\theta=\frac{q-\mathrm{E}(q \mid r)}{\sigma(q \mid r)}=r q-1 \tag{52}
\end{equation*}
$$

Standardized density by probability balance:

$$
\begin{equation*}
q=\frac{\theta+1}{r}, \quad \mathrm{~d} q=\frac{1}{r} \mathrm{~d} \theta \quad \Longrightarrow \quad g(\theta) \mathrm{d} \theta=f(q \mid r) \mathrm{d} q=\mathrm{e}^{-r q} r \mathrm{~d} q=\mathrm{e}^{-(\theta+1)} \mathrm{d} \theta, \theta \geq-1 \tag{53}
\end{equation*}
$$

Standardized density and cumulative distribution:

$$
\begin{equation*}
g(\theta)=\mathrm{e}^{-(\theta+1)}, \theta \geq-1, \quad G(\theta)=\int_{-1}^{\theta} g(z) \mathrm{d} z=1-\mathrm{e}^{-(\theta+1)} \tag{54}
\end{equation*}
$$

$g(\theta)$ is a shifted exponential distribution.

- Proxy property: example.

- Suppose v_{i} and v_{j} both belong to the same standardization class.
- Their info-gap model is eq.(19), p.9, and robustness is eq.(26), p.10.
- Their standardization functions are:

$$
\begin{equation*}
\theta\left(v_{i}\right)=\frac{v_{i}-\widetilde{v}_{i}}{c s_{i}} \tag{55}
\end{equation*}
$$

where $c>0$.

- $G(\theta)=$ cumulative probability distribution function of the standardized random variables.
- Probability of success for option i is:

$$
\begin{align*}
P_{\mathrm{s}}(i) & =\operatorname{Prob}\left(v_{i} \geq v_{\mathrm{c}}\right)=\operatorname{Prob}\left(\frac{v_{i}-\widetilde{v}_{i}}{c s_{i}} \geq \frac{v_{\mathrm{c}}-\widetilde{v}_{i}}{c s_{i}}\right) \tag{56}\\
& =1-G\left(\frac{v_{\mathrm{c}}-\widetilde{v}_{i}}{c s_{i}}\right) \tag{57}\\
& =1-G\left[-\frac{\widehat{h}\left(i, v_{\mathrm{c}}\right)}{c}\right] \tag{58}
\end{align*}
$$

where eq.(58) results from eqs.(57) and (26) if $v_{\mathrm{c}} \leq \widetilde{v}_{i}$.

- We see that:

$$
\begin{equation*}
P_{\mathrm{s}}(i)>P_{\mathrm{s}}(j) \text { if and only if } \widehat{h}\left(i, v_{\mathrm{c}}\right)>\widehat{h}\left(j, v_{\mathrm{c}}\right) \tag{59}
\end{equation*}
$$

- This example illustrates a general result:

Standardization implies that the proxy property holds.

- In order to calculate $\widehat{h}\left(i, v_{\mathrm{c}}\right)$ and hence maximize $P_{\mathrm{s}}(i)$ we must be able to standardize the v_{i} 's, eq.(55).
- This requires knowing, for each i :
- $\widetilde{v}_{i}=$ mean.
- $c s_{i}$ proportional to standard deviation.
- This does not require knowing:
- Value of c (actual standard deviations).
- Identify of pdf.

2.6 Coherence

§ Coherence:

- A weak informational-overlap between an info-gap model and a probability distribution.
- Coherence is necessary and sufficient for the proxy property to hold.
§ Scalar uncertainty, q.
- r is the decision vector.
- E.g. $q=r^{T} v$.
- $\mathcal{Q}_{r}(h)$ is info-gap model for q.
- $P(q \mid r)$ and $p(q \mid r)$ are cumulative prob distribution (cpd) and pdf for q.
- $G(r, q)$ is the performance function. Monotonic in q.
- Define:

$$
\begin{align*}
q^{\star}(h, r) & \equiv \max _{q \in \mathcal{Q}_{r}(h)} q \tag{60}\\
q_{\star}(h, r) & \equiv \min _{q \in \mathcal{Q}_{r}(h)} q \tag{61}\\
\mu(h) & \equiv \min _{q \in \mathcal{Q}_{r}(h)} G(r, q) \tag{62}
\end{align*}
$$

- Define inverse of $G(r, q)$, at fixed r, as follows.

If $G(r, q)$ increases as q increases:

$$
\begin{equation*}
G^{-1}\left(r, q_{c}\right) \equiv \max \left\{q: G(r, q) \leq q_{c}\right\} \tag{63}
\end{equation*}
$$

If $G(r, q)$ decreases as q increases:

$$
\begin{equation*}
G^{-1}\left(r, q_{\mathrm{c}}\right) \equiv \min \left\{q: G(r, q) \leq q_{\mathrm{c}}\right\} \tag{64}
\end{equation*}
$$

Definition 3. $\mathcal{Q}_{r}(h)$ and $P(q \mid r)$ are upper coherent at decisions r_{1} and r_{2} and critical value q_{c}, with performance function $G(r, q)$, if the following two relations hold for $i=1$ or $i=2$, and $j=3-i$:

$$
\begin{align*}
P\left[G^{-1}\left(r_{i}, q_{\mathrm{c}}\right) \mid r_{i}\right]> & P\left[G^{-1}\left(r_{j}, q_{\mathrm{c}}\right) \mid r_{j}\right] \tag{65}\\
G^{-1}\left(r_{i}, q_{\mathrm{c}}\right)-q^{\star}\left(h, r_{i}\right)> & G^{-1}\left(r_{j}, q_{\mathrm{c}}\right)-q^{\star}\left(h, r_{j}\right) \\
& \text { for } h=\widehat{h}\left(r_{j}, q_{\mathrm{c}}\right) \text { and } h=\widehat{h}\left(r_{i}, q_{\mathrm{c}}\right) \tag{66}
\end{align*}
$$

$\mathcal{Q}_{r}(h)$ and $P(q \mid r)$ are lower coherent if eqs.(65) and (66) hold when $q^{\star}(h, r)$ is replaced by $q_{\star}(h, r)$.

- Coherence implies "information overlap" between $\mathcal{Q}_{r}(h)$ and $P(q \mid r)$.
- Eq.(65) depends on $P(q \mid r)$ but not on h or $\mathcal{Q}_{r}(h)$.
- Eq.(66) depends on h and $\mathcal{Q}_{r}(h)$ but not on $P(q \mid r)$.
- Coherence implies that knowledge of one function reveals something about the other.
§ Example. Following are coherent with $G(r, q)=q / r$:

$$
\begin{gather*}
P(q \mid r)=1-\mathrm{e}^{-r q} \tag{67}\\
\mathcal{Q}_{r}(h)=\left\{q: 0 \leq q \leq \frac{h}{r}\right\}, \quad h \geq 0 \tag{68}
\end{gather*}
$$

- As r increases, $P(q \mid r)$ and $\mathcal{Q}_{r}(h)$ both become more highly concentrated.
- Each reveals something about the other. There is some "coherence" between them.
\S Example. Following are not coherent with $G(r, q)=q / r$: Exponential distribution, eq.(67), and:

$$
\begin{equation*}
\mathcal{Q}_{r}(h)=\{q: 0 \leq q \leq r h\}, \quad h \geq 0 \tag{69}
\end{equation*}
$$

- As r increases, $P(q \mid r)$ becomes more highly focussed while $\mathcal{Q}_{r}(h)$ becomes more dispersed.

2.7 Coherence and the Proxy Property

§ We now state and discuss an important theorem:
coherence is necessary and sufficient for the proxy property to hold.

Definition 4 An info-gap model, $\mathcal{Q}_{r}(h)$, expands upward continuously at h if, for any $\varepsilon>0$, there is a $\delta>0$ such that:

$$
\begin{equation*}
\left|q^{\star}\left(h^{\prime}, r\right)-q^{\star}(h, r)\right|<\varepsilon \quad \text { if } \quad\left|h^{\prime}-h\right|<\delta \tag{70}
\end{equation*}
$$

Continuous downward expansion is defined similarly with $q_{\star}(\cdot)$ instead of $q^{\star}(\cdot)$.
We can now state a proposition. ${ }^{2}$

Proposition 1 Info-gap robustness to an uncertain scalar variable, with a loss function which is monotonic in the uncertain variable, is a proxy for probability of survival if and only if the info-gap model $\mathcal{Q}_{r}(h)$ and the probability distribution $P(q \mid r)$ are coherent.

Given:

- At any fixed decision r, the performance function, $G(r, q)$, is monotonic (though not necessarily strictly monotonic) in the scalar q.
- $\mathcal{Q}_{r}(h)$ is an info-gap model with the property of nesting.
- r_{1} and r_{2} are decisions with positive, finite robustnesses at critical value q_{c}.
- $\mathcal{Q}_{r}(h)$ is continuously upward (downward) expanding at $\widehat{h}\left(r_{1}, q_{c}\right)$ and at $\widehat{h}\left(r_{2}, q_{\mathrm{c}}\right)$ if $G(r, q)$ increases (decreases) with increasing q.
Then: The proxy property holds for $\mathcal{Q}_{r}(h)$ and $P(q \mid r)$ at r_{1}, r_{2} and q_{c} with performance function $G(r, q)$.
If and only if: $\mathcal{Q}_{r}(h)$ and $P(q \mid r)$ are upper (lower) coherent at r_{1}, r_{2} and q_{c} with performance function $G(r, q)$ which increases (decreases) in q.

[^1]
[^0]: ${ }^{1}$ Significant overlap between sections 2.3-2.6 here and section 6 in Lecture Notes on Robust-Satisficing Behavior, rsb02.tex.

[^1]: ${ }^{2}$ Yakov Ben-Haim, 2012, Robust satisficing and the probability of survival, International Journal of System Science, appearing on-line 9 May 2012. Link at: http://info-gap.com/content.php?id=11

