# Lecture Notes on the Optimizer's Curse

Yakov Ben-Haim Yitzhak Moda'i Chair in Technology and Economics Faculty of Mechanical Engineering Technion — Israel Institute of Technology Haifa 32000 Israel yakov@technion.ac.il http://info-gap.com http://www.technion.ac.il/yakov

**A Note to the Student:** These lecture notes are not a substitute for the thorough study of articles and books. These notes are no more than an aid in following the lectures.

### $\S$ Sources:

• Smith, James E. and Robert L. Winkler, 2006, The optimizer's curse: Skepticism and postdecision surprise in decision analysis, *Management Science*, Vol. 52, No. 3, pp.311–322.

• Thaler, Richard H., 1992, *The Winner's Curse: Paradoxes and Anomalies of Economic Life*, Princeton University Press.

# Contents

| 1 | Prob | babilistic Analysis                           | 2 |
|---|------|-----------------------------------------------|---|
|   | 1.1  | Formulation                                   | 2 |
|   | 1.2  | Simple Examples                               | 3 |
|   |      | 1.2.1 3 Zero-Mean Alternatives                | 3 |
|   |      | 1.2.2 <i>n</i> Zero-Mean Alternatives         | 1 |
|   |      | 1.2.3 3 Different Alternatives                | 5 |
|   | 1.3  | Distribution of $\tilde{v}_{i^{\star}}$       | 3 |
|   | 1.4  |                                               |   |
| 2 | Info | -Gap Analysis                                 | 3 |
|   | 2.1  | Robustness: Formulation                       | 9 |
|   | 2.2  | Robustness: Simple Example                    |   |
|   | 2.3  | Probability of Success and the Proxy Property |   |
|   | 2.4  | Proxy Property: Simple Examples 12            |   |
|   |      | 2.4.1 Normal Distribution                     |   |
|   |      | 2.4.2 Uniform Distribution                    | 2 |
|   | 2.5  | Standardization and the Proxy Property 14     | 1 |
|   | 2.6  | Coherence                                     |   |
|   | 2.7  | Coherence and the Proxy Property              |   |

# 1 Probabilistic Analysis

# 1.1 Formulation

 $\S n$  alternatives:  $1, \ldots, n$ .

- $v_i =$ **Unknown** true value of *i*th alternative.  $v = (v_1, ..., v_n)^T$ .
- $\tilde{v}_i =$ **Known** noisy estimated value of *i*th alternative.  $\tilde{v} = (\tilde{v}_1, \dots, \tilde{v}_n)^T$ .

### § Regret:

- Choose alternative *i*, expecting  $\tilde{v}_i$ .
- Obtain realized outcome  $v_i$ .
- Regret, or disappointment: ṽ<sub>i</sub> − v<sub>i</sub>.
   Positive regret if v<sub>i</sub> < ṽ<sub>i</sub>.

### § Unbiased estimates:

$$\mathbf{E}(\tilde{v}_i|v) = v_i \tag{1}$$

Thus, for any choice *i*, the expected regret is zero:

$$\mathbf{E}(\widetilde{v}_i - v_i | v) = 0 \tag{2}$$

This is because:

$$E(\tilde{v}_i|v) = v_i = E(v_i|v)$$
(3)

### § Outcome optimization:

$$i^{\star} = \arg\max_{i} \widetilde{v}_{i} \tag{4}$$

 $\S$  **Question:** Is this a good, sensible strategy?

### $\S$ Expect positive regret from $\widetilde{v}_{i^{\star}}.$

- Example:
  - $\circ$  Suppose  $E(v_i) = \mu$ , a constant, for all *i*.
  - $\circ$  Anticipate  $E(\tilde{v}_{i^{\star}}) > \mu$  since:
    - $-\tilde{v}_{i^{\star}}$  is the maximum of *n* estimates.
    - $-\tilde{v}_{i^{\star}}$  will tend to be on upper tail. (Example: best grade of n exams.)
  - Hence  $E(\tilde{v}_{i^{\star}} v_{i^{\star}}) = E(\tilde{v}_{i^{\star}}) \mu > 0.$
- Meaning: On average, estimated outcome optimum:
  - Is over-estimate.
  - $\circ$  Has positive regret.
- We will explore this more deeply later.

### 1.2 Simple Examples

 $\S$  We consider some simple examples from Smith and Winkler (2006).

#### 1.2.1 3 Zero-Mean Alternatives

 $\S$  The true values,  $v_i$ , all precisely equal zero. They are not random variables.

§ The estimates,  $\tilde{v}_i$ , are all  $\mathcal{N}(0,1)$ . See fig. 1.



Figure 1: Smith and Winkler (2006), fig. 1.

 $\S$  The mean of the distribution of  $\widetilde{v}_{i^{\star}}$  is 0.85.

(We will understand this more deeply later.)

§ Thus the average regret,  $E(\tilde{v}_{i^{\star}} - 0)$ , is 0.85.

#### § More generally, suppose:

- The true values are  $v_i = \mu$  for all *i*. They are not random variables.
- The estimates,  $\tilde{v}_i$ , are all  $\mathcal{N}(\mu, \sigma^2)$ .
- Then  $E(v_{i^{\star}}) = \mu + 0.85\sigma$  which is the average regret.

#### **1.2.2** *n* Zero-Mean Alternatives

#### § **lf:**

- $v_i = 0$  for all i = 1, ..., n (not random variable).
- $\tilde{v}_i \sim \mathcal{N}(0, 1)$  for all  $i = 1, \ldots, n$ .

 $\S$  Then the regret increases as *n* increases. See fig. 2.

This makes sense:

- $\circ \tilde{v}_{i^{\star}}$  is the maximum of *n* estimates.
- $\circ$  This maximum tends to increase as n increases.





Figure 2: Smith and Winkler (2006), fig. 2.

#### 1.2.3 3 Different Alternatives

§ The true values are  $v_i = -\Delta$ , 0,  $\Delta$ . Not random variables.

§ The estimates are unbiased normal with unit standard deviation:  $\tilde{v}_i \sim \mathcal{N}(v_i, 1)$ .

 $\S$  As the alternatives become more different, we should expect  $\tilde{v}_{i^{\star}}$  to become a better bet. See fig. 3.

#### Distribution of maximum value estimate Probability of Expected Δ disappointment correct choice Distribution of value 0.0 0.85 0.33 estimates 0.66 0.42 0.2 $(\Delta = 0.5)$ 0.50 0.51 0.4 0.39 0.59 0.6 0.66 0.8 0.30 0.22 0.73 1.0 0.78 1.2 0.17 0.83 1.4 0.12 0.10 0.87 1.6 0.90 1.8 0.07 2.0 0.05 0.92 2.2 0.03 0.94 0.02 0.95 2.4 2.6 0.01 0.97 -2 0 1 2 -1 2.8 0.01 0.98 -3 з 3.0 0.00 0.98

#### Figure 3 The Distribution of Maximum Value Estimates with Separation Between Alternatives

Figure 3: Smith and Winkler (2006), fig. 3.

### **1.3** Distribution of $\tilde{v}_{i^{\star}}$

 $\S$  In this section we derive and study the distribution of  $\tilde{v}_{i^{\star}}$ .

- We will understand why its mean exceeds  $E(\tilde{v}_i)$ .
- Source: DeGroot, Morris H., 1986, Probability and Statistics, 2nd ed., Addison-Wesley,

Reading, MA. Section 3.2, pp.182–183.

§  $\tilde{v}_i$  is the estimated value of the *i*th alternative.

- Its cumulative probability distribution (cpd) is  $F_i(v)$ .
- All the  $\tilde{v}_i$  are statistically independent.

 $\S \widetilde{v}_{i^{\star}} = \max_i \widetilde{v}_i.$ 

Its cpd is G(v), derived as follows:

$$G(v) = \operatorname{Prob}(\widetilde{v}_{i^{\star}} \le v) \tag{5}$$

$$= \operatorname{Prob}(\widetilde{v}_1 \le v, \dots, \widetilde{v}_n \le v)$$
(6)

$$= \prod_{i=1}^{n} F_i(v) \tag{7}$$

§ If the  $\tilde{v}_i$  are i.i.d. with cpd F(v) and pdf f(v) then:

$$G(v) = [F(v)]^n \tag{8}$$

$$g(v) = \frac{\partial G}{\partial v} = n[F(v)]^{n-1}f(v), \text{ where } f(v) = \frac{\partial F}{\partial v}$$
 (9)

§ Now compare  $E(\tilde{v}_{i^{\star}})$  and  $E(\tilde{v}_{i})$  for i.i.d. case:

$$\mathbf{E}(\tilde{v}_{i^{\star}}) = \int vg(v) \,\mathrm{d}v \tag{10}$$

$$= \int v n [F(v)]^{n-1} f(v) \,\mathrm{d}v \tag{11}$$

$$\mathbf{E}(v_i) = \int v f(v) \, \mathrm{d}v \tag{12}$$

Thus:

$$E(\tilde{v}_{i^{\star}}) - E(v_{i}) = \int v[g(v) - f(v)] \, dv = \int v f(v) \left( n[F(v)]^{n-1} - 1 \right) \, dv$$
(13)

This integral is positive for  $n \ge 2$ , as we now explain intuitively.



Figure 4: Illustration of  $y_n$ .

§ Define  $v^{(1)}$  as the value at which:  $n[F(v^{(1)})]^{n-1} = 1$ . This is also the value at which f(v) = g(v). See fig. 4.

- Hence:  $F(v^{(1)}) = (1/n)^{1/(n-1)}$ .
- Note that  $n[F(v)]^{n-1} \leq 1$  iff  $v \leq v^{(1)}$  because F(v) increases monotonically in v.
- Hence, from eq.(9), note that  $g(y) \le f(v)$  for  $v \le v^{(1)}$  as seen in fig. 4.
- Thus, since g(v) is normalized, it is shifted to the right wrt f(v).
- Thus,  $E(\tilde{v}_{i^{\star}}) \geq E(\tilde{v}_{i})$ .

### 1.4 Optimizer's Curse Theorem

**Theorem 1** The expected regret from the estimated optimal alternative is non-negative. *Given:* 

•  $\tilde{v} = (\tilde{v}_1, \ldots, \tilde{v}_n)^T$  are noisy estimated values of n alternatives. These are random variables.

- The estimates are unbiased:  $E(\tilde{v}_i|v) = v_i$ .
- $v = (v_1, \ldots, v_n)^T$  are true values of n alternatives.
- $i^{\star} = \arg \max_{i} \widetilde{v}_{i}$  is the index of the most favorable estimate.

#### Then:

$$\mathcal{E}(\tilde{v}_{i^{\star}} - v_{i^{\star}}|v) \ge 0 \tag{14}$$

where the expectation is with respect to  $\tilde{v}$  conditioned on v.

**Proof.** Recall from eq.(4):

$$i^{\star} = \arg\max_{i} \widetilde{v}_{i} \tag{15}$$

Define  $i' = \arg \max_i v_i$ . Then:

$$\widetilde{v}_{i^{\star}} - v_{i^{\star}} \ge \widetilde{v}_{i^{\star}} - v_{i^{\prime}} \ge \widetilde{v}_{i^{\prime}} - v_{i^{\prime}} \tag{16}$$

- The left inequality is because  $v_{i'} \ge v_{i^{\star}}$ .
- The right inequality is because  $\tilde{v}_{i^{\star}} \geq \tilde{v}_{i'}$ .

Now take expectations of eq.(16) w.r.t.  $\tilde{v}$ , conditioned on v:

$$\mathbf{E}(\tilde{v}_{i^{\star}} - v_{i^{\star}}|v) \ge \mathbf{E}(\tilde{v}_{i^{\star}} - v_{i'}|v) \ge 0$$
(17)

- $\bullet$  The 0 on the right is because the estimates are unbiased:  $\mathrm{E}(\widetilde{v}_{i'}-v_{i'}|v)=0.$
- Eq.(17) implies eq.(14). ■

# 2 Info-Gap Analysis

§ Related material in "Lecture Notes on Robust-Satisficing Behavior", section 6: Probability of Success. File: lectures\info-gap-methods\lectures\rsb02.tex.

§ **Question:** Since  $\tilde{v}_{i^{\star}}$  is unreliable (it has positive regret), what should we do?

§ A Potential answer. Bayesian analysis (Smith and Winkler, 2006):

- Posit prior probability for v, p(v), and conditional probability for  $\tilde{v}$  given v,  $p(\tilde{v}|v)$ .
- Use Bayes' rule to determine posterior probability of v given  $\tilde{v}$ :  $p(v|\tilde{v})$ .
- Choose alternative based on posterior means,  $E(v_i|\tilde{v})$ :

$$i^{\star} = \arg\max_{i} \mathcal{E}(v_{i}|\tilde{v}) \tag{18}$$

- Smith and Winkler (2006) show that this solution does not have the optimizer's curse!
- The problem: where do you get these pdf's?

#### § A potential answer. Info-gap robust-satisficing:

- Satisfice the value:  $v_i \ge v_c$ . (We will find the regret entering later.)
- Maximize the robustness.

§ A potential answer. Info-gap opportune-windfalling:

- Windfall the value:  $v_i \ge v_w$  where  $v_w \gg v_c$ .
- Maximize the opportuneness.

#### **§ We will explore:**

- Robust-satisficing.
- Proxy theorems.

### 2.1 Robustness: Formulation

§ **Observations:** known noisy estimated values of *n* alternatives:  $\tilde{v} = (\tilde{v}_1, \ldots, \tilde{v}_n)^T$ .

### § Uncertainty:

- Unknown true values of *n* alternatives:  $v = (v_1, \ldots, v_n)^T$ .
- $\mathcal{V}(h) = \text{info-gap model for } v. \text{ E.g.:}$

$$\mathcal{V}(h) = \left\{ v : \left| \frac{v_i - \tilde{v}_i}{s_i} \right| \le h, \ \forall i \right\}, \quad h \ge 0$$
(19)

Or:

$$\mathcal{V}(h) = \left\{ v : (v - \tilde{v})^T S^{-1} (v - \tilde{v}) \le h^2 \right\}, \quad h \ge 0$$
(20)

 $\S$  **Decision:** *r* is the decision vector. E.g.:

- A standard unit basis vector, selecting a single alternative.
- An *n*-vector probability distribution selecting a randomized mix of alternatives.

§ Performance function. Value:

$$q(r,v) = r^T v \tag{21}$$

§ **Performance requirement.** Satisfice the value:

$$q(r,v) \ge q_{\rm c} \tag{22}$$

§ Robustness:

$$\widehat{h}(r, q_{\rm c}) = \max\left\{h: \left(\min_{v \in \mathcal{V}(h)} r^T v\right) \ge q_{\rm c}\right\}$$
(23)

### 2.2 Robustness: Simple Example

 $\S$  We evaluate the robustness, eq.(23), with the info-gap model of eq.(19).

 $\S$  Let  $\mu(h)$  denote the inner minimum in eq.(23).

- $\mu(h)$  occurs when  $r^T v$  is minimal.
- The elements of *r* are non-negative, so  $\mu(h)$  occurs when each  $v_i$  is minimal:

$$\mu(h) = \sum_{i=1}^{n} (\tilde{v}_i - s_i h) r_i$$
(24)

$$= r^T \tilde{v} - h r^T s \tag{25}$$

Equating this to  $q_c$  and solving for h yields the robustness:

$$\hat{h}(r, q_{\rm c}) = \frac{r^T \tilde{v} - q_{\rm c}}{r^T s}$$
(26)

or zero if this is negative.

 $\S$  **Regret.** The numerator in eq.(26) is a regret:

- $r^T \tilde{v}$ : expected outcome.
- $q_c$ : required or critical or least acceptable outcome.
- Positive regret: critical outcome lower than expectation:  $r^T \tilde{v} q_c > 0$ .
- Zero regret has zero robustness. This is related to the zeroing property.
- Positive regret has positive robustness.

This is related to the trade off of robustness vs. performance.

§ **Preference reversal.** It is evident from eq.(26) that robustness curves of different decisions can cross one another.

# 2.3 Probability of Success and the Proxy Property

#### 1

### $\S$ Probability of success:

- Define  $q = r^T v$ .
- $Q(h) = info-gap \mod for uncertainty in q.$
- Requirement:  $q \ge q_c$ .
- p(q|r) = pdf of q given r. This pdf is **unknown**.
- $P_{\rm s}(r, q_{\rm c}) =$  probability of satisfying the requirement with *r*:

$$P_{\rm s}(r,q_{\rm c}) = \operatorname{Prob}(q \ge q_{\rm c}) = \int_{q_{\rm c}}^{\infty} p(q|r) \,\mathrm{d}q \tag{27}$$

§ Probabilistic preferences:

$$r_1 \succ_p r_2$$
 if  $P_s(r_1, q_c) > P_s(r_2, q_c)$  (28)

§ Robust-satisficing preferences:

$$r_1 \succ_r r_2$$
 if  $\hat{h}(r_1, q_c) > \hat{h}(r_2, q_c)$  (29)

### $\S$ **Proxy Property:**

**Definition 1**  $Q_r(h)$  and P(q|r) have the **proxy property** at decisions  $r_1$  and  $r_2$  and critical value  $q_c$ , with performance function G(r, q), if:

$$\hat{h}(r_1, q_c) > \hat{h}(r_2, q_c)$$
 if and only if  $P_s(r_1, q_c) > P_s(r_2, q_c)$  (30)

- The proxy property is symmetric between robustness and probability of success.
- We are particularly interested in the implication from robustness to probability.

• Thus, when the proxy property holds we will sometimes say that robustness is a proxy for probability of success.

• Sounds like a free lunch!

§ **Proxy theorem:** The proxy property holds if and only if the info-gap model and the probability distribution are "coherent". We will return to the idea of coherence in section 2.6.

<sup>&</sup>lt;sup>1</sup>Significant overlap between sections 2.3–2.6 here and section 6 in Lecture Notes on Robust-Satisficing Behavior, rsb02.tex.

# 2.4 Proxy Property: Simple Examples

 $\S$  Before discussing coherence we examine simple examples of the proxy property, based on the simple example in section 2.2.

### 2.4.1 Normal Distribution

 $\S$  Let  $q = r^T v$  be normal:

$$q \sim \mathcal{N}\left[r^T \tilde{v}, \ (r^T s)^2 c^2\right]$$
(31)

where c > 0.

#### $\S$ The probability of success, eq.(27), is:

$$P_{\rm s}(r,q_{\rm c}) = \operatorname{Prob}(q \ge q_{\rm c})$$
 (32)

$$= \operatorname{Prob}\left(\frac{q-r^{T}\tilde{v}}{(r^{T}s)c} \ge \frac{q_{c}-r^{T}\tilde{v}}{(r^{T}s)c}\right)$$
(33)

$$= 1 - \Phi\left(\frac{q_{\rm c} - r^T \tilde{v}}{(r^T s)c}\right) \tag{34}$$

$$= 1 - \Phi\left(-\frac{\hat{h}(r, q_{\rm c})}{c}\right) \tag{35}$$

where eq.(35) results from eq.(26).  $\Phi(\cdot)$  is the cpd of the standard normal variable.

#### § Proxy property holds.

- From eq.(35) we see that  $P_{\rm s}(r, q_{\rm c})$  depends on r only through  $\hat{h}(r, q_{\rm c})$ .
- Hence eq.(35) implies eq.(30) and the proxy property holds.
- We only need to know that:
  - $\circ q$  is normal with mean  $r^T \tilde{v}$ .
  - $\circ$  That c > 0. We needn't know the variance.

### 2.4.2 Uniform Distribution

#### $\S$ Define uniform distributions as:

$$p(y|a,b) = \begin{cases} \frac{1}{b-a} & \text{if } a \le y \le b\\ 0 & \text{else} \end{cases}$$
(36)

§ Suppose  $q = r^T v$  is uniform, p(q|a, b), where:

$$a = r^T \tilde{v} - \frac{c}{2} r^T s \tag{37}$$

$$b = r^T \tilde{v} + \frac{c}{2} r^T s \tag{38}$$

where c > 0.

### $\S$ Probability of success, as in eqs.(32) and (33), is:

$$P_{\rm s}(r,q_{\rm c}) = \operatorname{Prob}(q \ge q_{\rm c})$$
 (39)

$$= \operatorname{Prob}\left(\frac{q - r^{T}\tilde{v}}{(r^{T}s)c} \ge \frac{q_{c} - r^{T}\tilde{v}}{(r^{T}s)c}\right)$$
(40)

 $\S$  Define:

$$z = \frac{q - r^T \tilde{v}}{(r^T s)c} \tag{41}$$

which is uniform, p(z|a, b), with:

$$a = -\frac{c}{2} \tag{42}$$

$$b = \frac{c}{2} \tag{43}$$

 $\S$  Now probability of success is analogous to eqs.(34) and (35):

$$P_{\rm s}(r,q_{\rm c}) = \operatorname{Prob}\left(z \ge \frac{q_{\rm c} - r^T \widetilde{v}}{(r^T s)c}\right)$$
 (44)

$$= 1 - P\left(\frac{q_{c} - r^{T}\widetilde{v}}{(r^{T}s)c}|a, b\right)$$
(45)

$$= 1 - P\left(-\frac{\hat{h}(r, q_{\rm c})}{c}|a, b\right)$$
(46)

where a and b are independent of r, eqs.(42) and (43).

### $\S$ Proxy property holds.

- From eq.(46) we see that  $P_{\rm s}(r,q_{\rm c})$  depends on r only through  $\hat{h}(r,q_{\rm c})$ .
- Hence eq.(46) implies eq.(30) and the proxy property holds.
- We only need to know that:
  - $\circ q$  is uniform with mean  $r^T \tilde{v}$ .
  - $\circ$  That c>0. We needn't know the variance.

# 2.5 Standardization and the Proxy Property

### $\S$ Probability of survival.

• Option *i* succeeds (survives) if its value is no less than the critical value:

$$v_i \ge v_c$$
 (47)

- $F_i(\cdot)$  denotes the cumulative probability distribution function of  $v_i$ .
- Probability of success for option *i* is:

$$P_{\rm s}(i) = {\rm Prob}(v_i \ge v_{\rm c}) = 1 - F_i(v_{\rm c})$$
 (48)

### $\S$ Standardization class of probability distributions:

**Definition 2** Let q be a scalar random variable with a pdf that depends on parameters r. The pdf is **standardizable** and  $\theta(q, r)$  is a **standardization function** if  $\theta(q, r)$  is a scalar function which is strictly increasing and continuous in q at any fixed r and whose pdf is the same for all r.

### § Example:

- f(q|r) is a pdf of a random variable q, where r is a vector of parameters of the pdf.
- f(q|r) is a class of pdfs parametrized by r.
- Mean and variance of q are  $\mu_q$  and  $\sigma_q^2$ . E.g.  $r = (\mu_q, \sigma_q^2)$ .
- Standardized random variable, with pdf  $g(\theta)$ , is:

$$\theta = (q - \mu_q) / \sigma_q \tag{49}$$

• If  $g(\theta)$  is independent of r then this is a standardization class. That is, if all the standardized random variables in the class have the same pdf, then this is a standardization class.

- Standardization classes are quite common:
  - $\circ$  the normal, uniform, and exponential distributions all being examples.

 $\circ$  The standardized distribution  $g(\theta)$  may belong to the standardization class, e.g. normal and uniform, but this is not necessarily true, e.g. the exponential.

### ¶ Example: exponential distribution:

$$f(q|r) = re^{-rq}, \quad q \ge 0$$
 (50)

Moments:

$$\mathbf{E}(q|r) = \sigma(q|r) = \frac{1}{r}$$
(51)

Standardized variable:

$$\theta = \frac{q - \mathcal{E}(q|r)}{\sigma(q|r)} = rq - 1$$
(52)

Standardized density by probability balance:

$$q = \frac{\theta + 1}{r}, \quad \mathrm{d}q = \frac{1}{r}\mathrm{d}\theta \quad \Longrightarrow \quad g(\theta)\mathrm{d}\theta = f(q|r)\mathrm{d}q = \mathrm{e}^{-rq}r\mathrm{d}q = \mathrm{e}^{-(\theta + 1)}\mathrm{d}\theta, \ \theta \ge -1$$
(53)

Standardized density and cumulative distribution:

$$g(\theta) = e^{-(\theta+1)}, \ \theta \ge -1, \qquad G(\theta) = \int_{-1}^{\theta} g(z) \, dz = 1 - e^{-(\theta+1)}$$
 (54)

 $g(\theta)$  is a shifted exponential distribution.

#### ¶ Proxy property: example.

- Suppose  $v_i$  and  $v_j$  both belong to the same standardization class.
- Their info-gap model is eq.(19), p.9, and robustness is eq.(26), p.10.
- Their standardization functions are:

$$\theta(v_i) = \frac{v_i - \tilde{v}_i}{cs_i} \tag{55}$$

where c > 0.

•  $G(\theta) =$  cumulative probability distribution function of the standardized random variables.

• Probability of success for option *i* is:

$$P_{\rm s}(i) = \operatorname{Prob}(v_i \ge v_{\rm c}) = \operatorname{Prob}\left(\frac{v_i - \tilde{v}_i}{cs_i} \ge \frac{v_{\rm c} - \tilde{v}_i}{cs_i}\right)$$
(56)

$$= 1 - G\left(\frac{v_{\rm c} - \widetilde{v}_i}{cs_i}\right) \tag{57}$$

$$= 1 - G\left[-\frac{\hat{h}(i, v_{\rm c})}{c}\right]$$
(58)

where eq.(58) results from eqs.(57) and (26) if  $v_{\rm c} \leq \widetilde{v}_i$ .

• We see that:

$$P_{
m s}(i) > P_{
m s}(j)$$
 if and only if  $\hat{h}(i, v_{
m c}) > \hat{h}(j, v_{
m c})$  (59)

• This example illustrates a general result:

### Standardization implies that the proxy property holds.

• In order to calculate  $\hat{h}(i, v_c)$  and hence maximize  $P_s(i)$  we must be able to standardize the  $v_i$ 's, eq.(55).

• This requires knowing, for each *i*:

 $\circ \widetilde{v}_i = \text{mean.}$ 

- $\circ cs_i$  proportional to standard deviation.
- This does not require knowing:
  - $\circ$  Value of c (actual standard deviations).
  - $\circ$  Identify of pdf.

## 2.6 Coherence

§ Coherence:

- A weak informational-overlap between an info-gap model and a probability distribution.
- Coherence is necessary and sufficient for the proxy property to hold.
- $\S$  Scalar uncertainty, q.
  - r is the decision vector.
  - E.g.  $q = r^T v$ .
  - $Q_r(h)$  is info-gap model for q.
  - P(q|r) and p(q|r) are cumulative prob distribution (cpd) and pdf for q.
  - G(r,q) is the performance function. Monotonic in q.
  - Define:

$$q^{\star}(h,r) \equiv \max_{q \in \mathcal{Q}_r(h)} q \tag{60}$$

$$q_{\star}(h,r) \equiv \min_{q \in \mathcal{Q}_r(h)} q \tag{61}$$

$$\mu(h) \equiv \min_{q \in \mathcal{Q}_r(h)} G(r, q)$$
(62)

- Define inverse of G(r,q), at fixed r, as follows.
- If G(r,q) increases as q increases:

$$G^{-1}(r, q_{\rm c}) \equiv \max\{q: \ G(r, q) \le q_{\rm c}\}$$
 (63)

If G(r,q) decreases as q increases:

$$G^{-1}(r, q_{\rm c}) \equiv \min \{q : G(r, q) \le q_{\rm c}\}$$
 (64)

**Definition 3**.  $Q_r(h)$  and P(q|r) are **upper coherent** at decisions  $r_1$  and  $r_2$  and critical value  $q_c$ , with performance function G(r,q), if the following two relations hold for i = 1 or i = 2, and j = 3 - i:

$$P[G^{-1}(r_i, q_c)|r_i] > P[G^{-1}(r_j, q_c)|r_j]$$

$$G^{-1}(r_i, q_c) - q^{\star}(h, r_i) > G^{-1}(r_j, q_c) - q^{\star}(h, r_j)$$
for  $h = \hat{h}(r_j, q_c)$  and  $h = \hat{h}(r_i, q_c)$  (66)

 $Q_r(h)$  and P(q|r) are **lower coherent** if eqs.(65) and (66) hold when  $q^*(h, r)$  is replaced by  $q_*(h, r)$ .

- Coherence implies "information overlap" between  $Q_r(h)$  and P(q|r).
- Eq.(65) depends on P(q|r) but not on h or  $Q_r(h)$ .
- Eq.(66) depends on h and  $Q_r(h)$  but not on P(q|r).

• Coherence implies that knowledge of one function reveals something about the other.

 $\S$  Example. Following are coherent with G(r,q)=q/r:

$$P(q|r) = 1 - e^{-rq}$$
(67)

$$\mathcal{Q}_r(h) = \left\{ q: \ 0 \le q \le \frac{h}{r} \right\}, \quad h \ge 0$$
(68)

- As *r* increases, P(q|r) and  $Q_r(h)$  both become more highly concentrated.
- Each reveals something about the other. There is some "coherence" between them.

§ **Example.** Following are **not** coherent with G(r,q) = q/r: Exponential distribution, eq.(67), and:

$$\mathcal{Q}_r(h) = \{q: \ 0 \le q \le rh\}, \quad h \ge 0$$
(69)

• As r increases, P(q|r) becomes more highly focussed while  $Q_r(h)$  becomes more dispersed.

# 2.7 Coherence and the Proxy Property

 $\S$  We now state and discuss an important theorem:

coherence is necessary and sufficient for the proxy property to hold.

**Definition 4** An info-gap model,  $Q_r(h)$ , **expands upward continuously** at *h* if, for any  $\varepsilon > 0$ , there is a  $\delta > 0$  such that:

$$|q^{\star}(h',r) - q^{\star}(h,r)| < \varepsilon \quad \text{if} \quad |h'-h| < \delta \tag{70}$$

**Continuous downward expansion** is defined similarly with  $q_{\star}(\cdot)$  instead of  $q^{\star}(\cdot)$ .

We can now state a proposition.<sup>2</sup>

**Proposition 1** Info-gap robustness to an uncertain scalar variable, with a loss function which is monotonic in the uncertain variable, is a proxy for probability of survival if and only if the info-gap model  $Q_r(h)$  and the probability distribution P(q|r) are coherent. *Given:* 

• At any fixed decision r, the performance function, G(r,q), is monotonic (though not necessarily strictly monotonic) in the scalar q.

- $Q_r(h)$  is an info-gap model with the property of nesting.
- $r_1$  and  $r_2$  are decisions with positive, finite robustnesses at critical value  $q_c$ .

•  $Q_r(h)$  is continuously upward (downward) expanding at  $\hat{h}(r_1, q_c)$  and at  $\hat{h}(r_2, q_c)$  if G(r, q) increases (decreases) with increasing q.

**Then:** The **proxy property** holds for  $Q_r(h)$  and P(q|r) at  $r_1$ ,  $r_2$  and  $q_c$  with performance function G(r,q).

If and only if:  $Q_r(h)$  and P(q|r) are upper (lower) coherent at  $r_1$ ,  $r_2$  and  $q_c$  with performance function G(r,q) which increases (decreases) in q.

<sup>&</sup>lt;sup>2</sup>Yakov Ben-Haim, 2012, Robust satisficing and the probability of survival, *International Journal of System Science*, appearing on-line 9 May 2012. Link at: http://info-gap.com/content.php?id=11