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A Note to the Student: These lecture notes are not a substitute for the thorough study of
articles and books. These notes are no more than an aid in following the lectures.

§ Sources:

e Smith, James E. and Robert L. Winkler, 2006, The optimizer’s curse: Skepticism and
postdecision surprise in decision analysis, Management Science, Vol. 52, No. 3, pp.311—
322.

e Thaler, Richard H., 1992, The Winner’s Curse: Paradoxes and Anomalies of Economic
Life, Princeton University Press.
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1 Probabilistic Analysis

1.1 Formulation

& n alternatives: 1, ... n.

¢ v; = Unknown true value of ith alternative. v = (vy, ..
¢ 9, = Known noisy estimated value of ith alternative. v = (74, ...

§ Regret:
e Choose alternative ¢, expecting v;.
e Obtain realized outcome ;.
¢ Regret, or disappointment: v; — v;.
Positive regret if v; < v;.

§ Unbiased estimates:
E(@Z‘U) = U;

Thus, for any choice i, the expected regret is zero:
E(T)l — ’UZ'|U) =0

This is because:
E(vilv) = v; = E(v;|v)

§ Outcome optimization:

1* = arg maxv;
§ Question: Is this a good, sensible strategy?

& Expect positive regret from v..
e Example:
o Suppose E(v;) = u, a constant, for all i.
o Anticipate E(v;x) > u since:
— v, is the maximum of n estimates.

7U’I’l

— v;+ will tend to be on upper tail. (Example: best grade of n exams.)

o Hence E(U;x — v;x) = E(v;+) — > 0.
e Meaning: On average, estimated outcome optimum:
o Is over-estimate.
o Has positive regret.

e We will explore this more deeply later.
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1.2 Simple Examples

§ We consider some simple examples from Smith and Winkler (2006).

1.2.1 3 Zero-Mean Alternatives

§ The true values, v;, all precisely equal zero. They are not random variables.

§ The estimates, v;, are all A/(0,1). See fig. 1.

Figure 1 The Distribution of the Maximum of Three Standard Normal
Value Estimates

Distribution of maximum
value estimate
(EV = 0.85)

Distribution of each
value estimate
(EV=0)

3 2 3 0 1 2 3
Figure 1: Smith and Winkler (2006), fig. 1.

& The mean of the distribution of v« is 0.85.
(We will understand this more deeply later.)

& Thus the average regret, E(7;x —0), is 0.85.

§ More generally, suppose:
e The true values are v; =  for all i. They are not random variables.
e The estimates, v;, are all N'(u, 2).
e Then E(v;+) = u + 0.850 which is the average regret.
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1.2.2 n Zero-Mean Alternatives

§ If:
ey, =0forall:=1, ..., n(not random variable).
e, ~N(0,1)foralli=1, ..., n.
§ Then the regret increases as n increases. See fig. 2.
This makes sense:
o v+ is the maximum of n estimates.
o This maximum tends to increase as n increases.

Figure 2 The Distribution of the Maximum of » Standard Normal Value Estimates
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Figure 2: Smith and Winkler (2006), fig. 2.
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1.2.3 3 Different Alternatives

§ The true values are v; = —A, 0, A. Not random variables.
§ The estimates are unbiased normal with unit standard deviation: v; ~ N (v;, 1).

& As the alternatives become more different, we should expect v~ to become a better bet.
See fig. 3.

Figure 3 The Distribution of Maximum Value Estimates with Separation Between Alternatives

Distribution of maximum value estimate Expected Probability of
A disappointment correct choice
DiStribUt.ion of value 0.0 0.85 0.33
estimates 0.2 0.66 0.42
(4=0.5) 0.4 0.51 0.50
06 0.39 0.59
08 0.30 0.66
1.0 0.22 0.73
1.2 0.17 0.78
1.4 0.12 0.83
16 0.10 0.87
1.8 0.07 0.80
2.0 0.05 0.92
2.2 0.03 0.94
24 0.02 0.95
T v . v 2.6 0.01 0.97
-3 -2 -1 0 1 2 3 2.8 0.01 0.98
3.0 0.00 0.98

Figure 3: Smith and Winkler (2006), fig. 3.
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1.3 Distribution of Vjx

§ In this section we derive and study the distribution of ;x.
e We will understand why its mean exceeds E(v;).

e Source: DeGroot, Morris H., 1986, Probability and Statistics, 2nd ed., Addison-Wesley,

Reading, MA. Section 3.2, pp.182—-183.

§ v; is the estimated value of the ith alternative.
e Its cumulative probability distribution (cpd) is F;(v).
¢ All the v; are statistically independent.

§ U« = max; ;.
Its cpd is G(v), derived as follows:
G(v) = Prob(v+ <)

= Prob(v; <wv, ..., 0, <v)

= 1[R0)

§ If the v; are i.i.d. with cpd F(v) and pdf f(v) then:
Gv) = [F()]"

G WP @)™ f(v), where f(v) = &

g(v) = v ~ oo

& Now compare E(v,+) and E(v;) for i.i.d. case:
B(v+) = / vg(v) dv
= [onlP@)" f(v) do
E(v;) = /vf(v) dv
Thus:
E(5;+) — B(v) = [vlg(v) = f@))dv = [of(w) (nF @) = 1) dv

This integral is positive for n > 2, as we now explain intuitively.

(13)
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0 -

N0

Figure 4: lllustration of y,,.

¢ Define v(!) as the value at which: n[F(v®)]"~! = 1. This is also the value at which
f(v) =g(v). Seefig. 4.

e Hence: F(v(V) = (1/n)/ (=Y,

e Note that n[F(v)]"~* < 1iff v < v(Y) because F(v) increases monotonically in v.

e Hence, from eq.(9), note that g(y) < f(v) for v < v(Y) as seen in fig. 4.

e Thus, since g(v) is normalized, it is shifted to the right wrt f(v).

e Thus, E(7,+) > E(v;).
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1.4 Optimizer’s Curse Theorem

OPTIMIZER’S CURSE

Theorem 1 The expected regret from the estimated optimal alternative is non-negative.

Given:

o0 = (vy, ..., 0,)T are noisy estimated values of n alternatives. These are random vari-

ables.
e The estimates are unbiased: E(v;|v) = v;.
ev= (v, ...,v,)T are true values of n alternatives.
o * = arg max v; Is the index of the most favorable estimate.

Then:

E(ﬁl* — U,l’*|U) Z 0

where the expectation is with respect to v conditioned on v.
Proof. Recall from eq.(4):
1* = arg maxv;

Define i = argmaxwv;. Then:
(2
Vix — Vx> GZ‘* — vy >V — Uy

[ 1 7

e The left inequality is because v, > v;x.
e The right inequality is because v;» > v,.

Now take expectations of eq.(16) w.r.t. ¥, conditioned on v:

E(@Z* — UZ'*|’U) Z E(IA}'Z* — U?:/|U) Z 0

e The 0 on the right is because the estimates are unbiased: E(v

e Eq.(17) implies eq.(14). 1

]

! — UZ-/|U) =0.

(17)
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2 Info-Gap Analysis

§ Related material in “Lecture Notes on Robust-Satisficing Behavior”, section 6: Probability
of Success. File: lectures\info-gap-methods\ lectures\rsb02.tex.

& Question: Since v;~ is unreliable (it has positive regret), what should we do?

§ A Potential answer. Bayesian analysis (Smith and Winkler, 2006):
e Posit prior probability for v, p(v), and conditional probability for v given v, p(v|v).
e Use Bayes' rule to determine posterior probability of v given v: p(v|?).
e Choose alternative based on posterior means, E(v;|?):

i* = argmax E(v;|0) (18)

e Smith and Winkler (2006) show that this solution does not have the optimizer’s curse!
e The problem: where do you get these pdf’s?

§ A potential answer. Info-gap robust-satisficing:
e Satisfice the value: v; > v.. (We will find the regret entering later.)

e Maximize the robustness.

§ A potential answer. Info-gap opportune-windfalling:
e Windfall the value: v; > vy, where v,, > v..
e Maximize the opportuneness.

§ We will explore:
¢ Robust-satisficing.
e Proxy theorems.

2.1 Robustness: Formulation
§ Observations: known noisy estimated values of n alternatives: v = (vy, ..., 0,)7.
§ Uncertainty:

e Unknown true values of n alternatives: v = (vy, ..., v,)T.
e V(h) = info-gap model for v. E.Q.:

Or:
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§ Decision: r is the decision vector. E.g.:
¢ A standard unit basis vector, selecting a single alternative.
¢ An n-vector probability distribution selecting a randomized mix of alternatives.

5 Performance function. Value:
q(r,v) =rTv (21)

§ Performance requirement. Satisfice the value:

Q(r7 U) 2 qe (22)
5 Robustness:
- _ _ o7 s
h(r,q.) max{h. (vrer%jl(rill)r v) > qc} (23)

2.2 Robustness: Simple Example

§ We evaluate the robustness, eq.(23), with the info-gap model of eq.(19).

§ Let u(h) denote the inner minimum in eq.(23).
e 1(h) occurs when rTv is minimal.
e The elements of r are non-negative, so p(h) occurs when each v; is minimal:

n

p(h) = Y (0 = sih)ri (24)

=1

= 7o —hr's (25)

Equating this to ¢. and solving for & yields the robustness:

T TT%} — e
h(ﬂ qC) = W (26)

or zero if this is negative.

5 Regret. The numerator in €q.(26) is a regret:

e r19: expected outcome.

e ¢.: required or critical or least acceptable outcome.

e Positive regret: critical outcome lower than expectation: »v — ¢, > 0.

e Zero regret has zero robustness. This is related to the zeroing property.

¢ Positive regret has positive robustness.

This is related to the trade off of robustness vs. performance.

§ Preference reversal. It is evident from eq.(26) that robustness curves of different deci-
sions can cross one another.
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2.3 Probability of Success and the Proxy Property
]
§ Probability of success:

e Define ¢ = 7.

e O(h) = info-gap model for uncertainty in .

e Requirement: ¢ > q..

e p(q|r) = pdf of ¢ given r. This pdf is unknown.

e P,(r,q.) = probability of satisfying the requirement with r:

P(r,q.) = Problg > a0) = [ plalr)dg 27)
§ Probabilistic preferences:
1 >'p T |f Ps(rla QC) > PS(T27 qc) (28)

§ Robust-satisficing preferences:

~ o~

™ >'r To If h(ThQC) > h<r27QC> (29)
§ Proxy Property:

Definition 1 Q,(h) and P(q|r) have the proxy property at decisions r, and r, and critical
value q., with performance function G(r, q), if:

/}\LOﬂl? QC) > /}\L(r% QC) ifand On/y If Ps(rla QC) > Ps(rQa QC) (30)

e The proxy property is symmetric between robustness and probability of success.

e We are particularly interested in the implication from robustness to probability.

e Thus, when the proxy property holds we will sometimes say that robustness is a proxy
for probability of success.

e Sounds like a free lunch!

§ Proxy theorem: The proxy property holds if and only if the info-gap model and the
probability distribution are “coherent”. We will return to the idea of coherence in section 2.6.

1Significant overlap between sections 2.3—-2.6 here and section 6 in Lecture Notes on Robust-Satisficing
Behavior, rsb02.tex.
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2.4 Proxy Property: Simple Examples

§ Before discussing coherence we examine simple examples of the proxy property, based
on the simple example in section 2.2.

2.4.1 Normal Distribution

¢ Let ¢ = rTv be normal:
q~N [rTﬂ, (TTS)ZCQ} (31)

where ¢ > 0.

§ The probability of success, eq.(27), is:

Fy(r,qc) = Prob(g = q) (32)
~ Prob (q(;TZ)Tf qz;;”;“) (33)
- 1-3 (qzr;;)i:ﬁ) (34)
s ( ﬁ(?“;%)) (35)

where eq.(35) results from eq.(26). ®(-) is the cpd of the standard normal variable.

§ Proxy property holds.
e From eq.(35) we see that P,(r, ¢.) depends on r only through A(r, g.).
e Hence eq.(35) implies eq.(30) and the proxy property holds.
e We only need to know that:
o ¢ is normal with mean 7.
o That ¢ > 0. We needn’t know the variance.

2.4.2 Uniform Distribution

5 Define uniform distributions as:

D B
plylab) = boa TOSYSD (36)
0 else
§ Suppose ¢ = rv is uniform, p(q|a, b), where:
a = 75— SpTs (37)

2
b = 1'% +§TTS (38)
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where ¢ > 0.

§ Probability of success, as in eqs.(32) and (33), is:

Py(r,q.) = Prob(q > q.)

T~ T~
q—Trv Qc — TV
= Prob >
" ( (Ts)e = (Ts)e )
¢ Define:
q— rTo
= (rTs)c
which is uniform, p(z|a, b), with:
_ _°c
¢T3
C
b=3

& Now probability of success is analogous to egs.(34) and (35):

rtou

o — 17T
P(r,q.) = Prob (zz ° )

T~

qC—T‘U
1—-P|—a.b
((rTs>c 'C")

_ 1_P(_Mﬁ%N%Q

C

where « and b are independent of r, eqs.(42) and (43).

§ Proxy property holds.

e From eq.(46) we see that P,(r, ¢.) depends on r only through A(r, .).

e Hence eq.(46) implies eq.(30) and the proxy property holds.
e We only need to know that:

o ¢ is uniform with mean r7%.

o That ¢ > 0. We needn’t know the variance.

13

(42)
(43)
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2.5 Standardization and the Proxy Property

§ Probability of survival.
e Option 7 succeeds (survives) if its value is no less than the critical value:

(4 > Ve (47)

e F;(-) denotes the cumulative probability distribution function of v;.
¢ Probability of success for option i is:

P,(i) = Prob(v; >v.) =1— F;(v.) (48)
§ Standardization class of probability distributions:

Definition 2 Let g be a scalar random variable with a pdf that depends on parameters r.
The pdf is standardizable and 0(q,r) is a standardization function if 0(q,r) is a scalar
function which is strictly increasing and continuous in q at any fixed » and whose pdf is the
same for all r.

& Example:
e f(g|r) is a pdf of a random variable ¢, where r is a vector of parameters of the pdf.
e f(q|r) is a class of pdfs parametrized by r.
e Mean and variance of ¢ are y, and o;. E.g. 7 = (114, 07).
e Standardized random variable, with pdf ¢(6), is:

0= (q— tq)/0q (49)

o If g(0) is independent of r then this is a standardization class. That is, if all the stan-
dardized random variables in the class have the same pdf, then this is a standardization
class.

e Standardization classes are quite common:

o the normal, uniform, and exponential distributions all being examples.
o The standardized distribution ¢g(#) may belong to the standardization class, e.g. nor-
mal and uniform, but this is not necessarily true, e.g. the exponential.

¥ Example: exponential distribution:

flglr)=re™™, q¢>0 (50)
Moments: '
E(q|r) = o(qlr) = . (51)
Standardized variable: .
0 — q_i(qm =rq—1 (52)

o(q|r)
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Standardized density by probability balance:
_0+1

15

¢=— dg = id@ —  g(A)df = fq|r)dg =e"rdg = e @*tVdg, 6 > -1  (53)

Standardized density and cumulative distribution:
0
g(e) = e_(6+1)7 0 Z _17 G(e) = / g(Z) dz=1-— e_(9+1)

g(0) is a shifted exponential distribution.

9 Proxy property: example.
e Suppose v; and v, both belong to the same standardization class.
e Their info-gap model is eq.(19), p.9, and robustness is eq.(26), p.10.
e Their standardization functions are:

where ¢ > 0.

(54)

(55)

e (G(0) = cumulative probability distribution function of the standardized random vari-

ables.
¢ Probability of success for option i is:

PS(Z) = Pl"Ob(’UZ' 2 Uc) — Prob (’Ui — V; 2 Ve — Uz’)
CS;

CS;
- 1-G (Uc - ﬁz)
CS;

o~

C

where eq.(58) results from eqs.(57) and (26) if v. < ;.
e We see that:
P,(i) > B,(j) ifandonlyif &(i,v.) > h(j,ve)

e This example illustrates a general result:
Standardization implies that the proxy property holds.

(59)

e In order to calculate A (i, v.) and hence maximize P,(i) we must be able to standardize

the v;’s, eq.(55).
¢ This requires knowing, for each i:
o ¥; = mean.
o cs; proportional to standard deviation.
e This does not require knowing:
o Value of ¢ (actual standard deviations).
o ldentify of pdf.
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2.6 Coherence

§ Coherence:
¢ A weak informational-overlap between an info-gap model and a probability distribution.
e Coherence is necessary and sufficient for the proxy property to hold.

§ Scalar uncertainty, g.
e 1 is the decision vector.
eEg.q=r"0.
e O,(h) is info-gap model for ¢.
e P(q|r) and p(q|r) are cumulative prob distribution (cpd) and pdf for g.
e GG(r, q) is the performance function. Monotonic in q.

e Define:
*(h = 60
q*(h,r) nax g (60)
(h, = | 1
¢ (h,7) ,Aain g (61)
u(h) = quQnTr(lh)G(r,q) (62)

e Define inverse of G(r, q), at fixed r, as follows.
If G(r,q) increases as g increases:

G7H(r,q.) =max{q: G(r,q) < qc} (63)
If G(r,q) decreases as q increases:
G (r,q) =min{q: G(r,q) < q.} (64)

Definition 3 . QO,.(h) and P(q|r) are upper coherent at decisions r, and r, and critical
value q., with performance function G(r,q), if the following two relations hold fori = 1 or
i=2,andj=3—1i:

PG (ri,qe)lri] > PIG™(rj,q0)|r] (65)
Gil(ria QC) - q*(ha 7"1') > Gil(rja QC) - q*(ha 7ﬂj)
forh = /B(rj, q.) and h = ?L(Ti, qc) (66)

Q.(h) and P(q|r) are lower coherent if eqs.(65) and (66) hold when ¢*(h, ) is replaced by
qx(h,T).

e Coherence implies “information overlap” between 9, (k) and P(g|r).
¢ Eq.(65) depends on P(q|r) but not on h or Q,.(h).
¢ Eq.(66) depends on h and Q,.(h) but not on P(q|r).
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e Coherence implies that knowledge of one function reveals something about the other.

§ Example. Following are coherent with G(r,q) = q/r:

Plgr)=1—¢e (67)

Qr(h)Z{q:OSqSh}, h>0 (68)

r

e As r increases, P(q|r) and Q,.(h) both become more highly concentrated.
e Each reveals something about the other. There is some “coherence” between them.

§ Example. Following are not coherent with G(r, q) = ¢/r: Exponential distribution, eq.(67),
and:
Q. (h)={q: 0<qg<rh}, h>0 (69)

e As r increases, P(q|r) becomes more highly focussed while Q, (k) becomes more dis-
persed.
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2.7 Coherence and the Proxy Property

§ We now state and discuss an important theorem:
coherence is necessary and sufficient for the proxy property to hold.

Definition 4 An info-gap model, Q,.(h), expands upward continuously at h if, for any
e > 0, there is a6 > 0 such that:

" (W, 7) = q*(h,r)| <& if | —h| <o (70)
Continuous downward expansion is defined similarly with q,(-) instead of ¢*(-).
We can now state a proposition.?

Proposition 1 Info-gap robustness to an uncertain scalar variable, with a loss function
which is monotonic in the uncertain variable, is a proxy for probability of survival if and only
if the info-gap model Q,.(h) and the probability distribution P(q|r) are coherent.

Given:

e At any fixed decision r, the performance function, G(r, q), is monotonic (though not nec-
essarily strictly monotonic) in the scalar q.

e O.(h) is an info-gap model with the property of nesting.

e 1 and ry are decisions with positive, finite robustnesses at critical value q..

e O,(h) is continuously upward (downward) expanding at h(r1,q.) and at h(rs, q.) if G(r,q)
increases (decreases) with increasing q.

Then: The proxy property holds for Q,(h) and P(q|r) at ry, ro and q. with performance
function G(r, q).

If and only if: Q.(h) and P(q|r) are upper (lower) coherent at r,, r, and q. with perfor-
mance function G(r, q) which increases (decreases) in q.

2Yakov Ben-Haim, 2012, Robust satisficing and the probability of survival, International Journal of System
Science, appearing on-line 9 May 2012. Link at: http://info-gap.com/content.php?id=11



