1

Lecture Notes on Conservation Management

or:

Robustness, Expected Utility and the Sumatran Rhinoceros

Yakov Ben-Haim Faculty of Mechanical Engineering Technion — Israel Institute of Technology Haifa 32000 Israel yakov@technion.ac.il http://tx.technion.ac.il/~yakov

Source material: Helen M. Regan, Yakov Ben-Haim, Bill Landford, Will G. Wilson, Per Lundberg, Sandy J. Andelman and Mark A. Burgman, 2005, Robust decision making under severe uncertainty for conservation management, *Ecological Applications*, vol.15(4): 1471–1477.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1	The Generic Problem: The Innovation Dilemma	2
2	The Problem: Endangered Species	3
3	Expected Utility	4
4	Uncertainties	5
5	Robustness	7
6	Example	8

 $^{^0\}lectures\info-gap-methods\lectures\rhino002.tex (supersedes rhino.tex) 23.10.2018 <math display="inline">_\odot$ Yakov Ben-Haim 2018.

1 The Generic Problem: The Innovation Dilemma

¶ Engineering design:

- Uncertain operating conditions of device.
- Various design alternatives.
- Uncertain performance for each alternative.
- The innovative alternative seems better than the others, but is more uncertain.

What to do?

¶ Business strategy:

- Uncertain plans of competitive firms.
- Various development alternatives for your firm.
- Uncertain outcome for each alternative.
- The innovative alternative seems better than the others, but is more uncertain.

What to do?

¶ Military field tactics:

- Uncertain enemy strength and deployment.
- Various available actions.
- Uncertain outcome for each action.
- The innovative alternative seems better than the others, but is more uncertain. What to do?

¶ Generic problem:

- States of the world with uncertain probabilities $p_1, p_2 \dots$
- Available actions $a_1, a_2 \dots$
- Uncertain utility v_{ij} of action *i* given state *j*.
- The innovative alternative seems better than the others, but is more uncertain.

What to do?

2 The Problem: Endangered Species

 \P The Sumatran rhinoceros is an endangered species. There are only a fairly small number of reproducing breeding pairs. We must choose a strategy which will enhance the probability of survival of the species.

 \P We will first develop the approach of **expected utility.**

 \P We will then embed the expected utility analysis in an **info-gap robust-satisficing** approach.

 \P We will deal with three basic entities:

1. States of the world, where p_j = probability that the world is in state j.

The states of the world refer to the alternative possible causes of decline and disappearance of the Sumatran rhinoceros:

- (a) Poaching.
- (b) Loss of habitat.
- (c) Demographic accidents.
- (d) Disease.
- 2. Actions, denoted a_1, a_2, \ldots , which can be adopted to protect the rhino. These include:
 - (a) Translocation of the rhino population to a new region.
 - (b) Extension of the current reserve in which the rhinos live.
 - (c) Captive breeding.
- 3. Utilities, v_{ij} of action a_i if the world is in state j. In our example, the utility v_{ij} will be the probability of survival of the species (for a specified duration, like a season or a decade), given that action a_i is taken when the world is in state j. Thus v_{ij} is a conditional probability. (Note that v_{ij} is not a normalized probability distribution. It may be, for instance, that the probability of survival is very low for all states of the world.)

3 Expected Utility

¶ The **expected utility** of action a_i is the average utility of that action:

$$\mathcal{E}(a_i) = \sum_j v_{ij} p_j \tag{1}$$

Since v_{ij} is the probability of survival given action a_i in state j, we see that $E(a_i)$ is the probability of survival averaged over all states of the world, if action a_i is taken.

¶ The **optimal action**, a^* , from the perspective of expected utility theory, is the action which maximizes the average utility:

$$a^{\star} = \arg \max_{a_i} \mathcal{E}(a_i)$$
 (2)

$$= \arg \max_{a_i} \sum_j v_{ij} p_j \tag{3}$$

 a^* is the action which, on average, has the highest utility (greatest probability of survival), based on the values of v_{ij} and p_j in eq.(3).

4 Uncertainties

¶ The expected utility approach is designed to deal with:

— Uncertainty in the state of the world. Hence, the terms p_j .

— Uncertainty in the survival resulting from action a_i in state j, hence the utilities v_{ij} which are conditional probabilities.

¶ However, these probabilities, p_j and v_{ij} , are themselves very imprecisely known. There are large **info-gaps** between the best estimates and the true values of these quantities.

¶ Consider the idea of **fractional error** of the estimate, \tilde{p}_j :

- $p_j =$ **unknown** true value of probability.
- $\tilde{p}_j = \mathbf{known}$ estimated value of probability.

Fractional error of the estimate:

$$\frac{p_j - \tilde{p}_j}{\tilde{p}_j} \bigg| \tag{4}$$

- We make two assertions based on our knowlege and our ignorance:
- We may make other assertions, such as p_j is a probability so $0 \le p_j \le 1$.
- Such assertions lead to the following fractional error model for uncertainty in the p_j 's:

$$\mathcal{P}(h,\tilde{p}) = \left\{ p: \sum_{j} p_{j} = 1, \ 0 \le p_{j} \le 1, \ \left| \frac{p_{j} - \tilde{p}_{j}}{\tilde{p}_{j}} \right| \le h \right\}, \quad h \ge 0$$
(5)

¶ We will represent the uncertainties in p_j and v_{ij} by the following fractional-error info-gap models $\mathcal{P}(h, \tilde{p})$ and $\mathcal{V}(h, \tilde{v})$. Eq.(6) is equivalent to eq.(5).

$$\mathcal{P}(h,\tilde{p}) = \left\{ p: \sum_{j} p_{j} = 1. \max[0, (1-h)\tilde{p}_{j}] \le p_{j} \le \min[1, (1+h)\tilde{p}_{j}], j = 1, 2, \ldots \right\},$$

$$h \ge 0 \qquad (6)$$

$$\mathcal{V}(h,\tilde{v}) = \{v: \max[0, (1-h)\tilde{v}_{ij}] \le v_{ij} \le \min[1, (1+h)\tilde{v}_{ij}], i = 1, 2, \dots, j = 1, 2, \dots\}, \\ h \ge 0$$
(7)

These are fractional-error info-gap models, adapted to the specific case of probabilities. In particular:

- 1. Since p_j and v_{ij} are probabilities, they must lie in the interval [0, 1].
- 2. The probability distribution p_j is normalized on j.
- 3. The probability distribution v_{ij} is not normalized on j:

It could be that $\sum_{j} v_{ij} \leq 1$, which occurs if all the survival probabilities are very small. It could be that $\sum_{j} v_{ij} \geq 1$, which occurs if all the survival probabilities are very large.

5 Robustness

¶ Given estimates \tilde{p} and \tilde{v} of the probabilities, we can estimate the expected utility of any action a_i , $E(a_i, \tilde{p}, \tilde{v})$.

¶ For any other choice of the probabilities, p and v, the expected utility is $E(a_i, p, v)$.

¶ Since these estimates, \tilde{p} and \tilde{v} , are very uncertain, we do not have confidence that the actual utility which is expected to result from action a_i equals $E(a_i, \tilde{p}, \tilde{v})$.

That is, we have every reason to believe that, for many choices of p and v, and especially for the true choice:

$$\mathcal{E}(a_i, p, v) \neq \mathcal{E}(a_i, \tilde{p}, \tilde{v}) \tag{8}$$

¶ Let E_c be the lowest level of expected utility (least average probability of survival of the species) which we are willing to accept. This is the idea of **satisficing**.

¶ The robustness of action a_i , to uncertainties in the probabilities p_j and v_{ij} , is the greatest horizon of uncertainty h up to which adequate expected utility, E_c , is obtained for any realization of the probabilities:

$$\widehat{h}(a_i, E_{\rm c}) = \max\left\{ h: \left(\min_{\substack{p \in \mathcal{P}(h, \widetilde{p}) \\ v \in \mathcal{V}(h, \widetilde{v})}} \sum_j v_{ij} p_j \right) \ge E_{\rm c} \right\}$$
(9)

¶ The robust optimal action, $\hat{a}(E_c)$, maximizes the robustness and satisfices the expected utility at the value E_c :

$$\widehat{a}(E_{\rm c}) = \arg\max_{a_i} \widehat{h}(a_i, E_{\rm c}) \tag{10}$$

¶ The robust-optimal action, $\hat{a}(E_c)$, depends on the aspiration for survival, E_c .

¶ The robust-optimal action, $\hat{a}(E_c)$, is very likely to be different from a^* , the action which maximizes the best-estimate of the expected utility.

¶ The robustness, $\hat{h}(a_i, E_c)$ in eq.(9), combines the following 3 basic components:

- System model: $E(a_i, p, v)$.
- Performance requirement: $E(a_i, p, v) \ge E_c$.
- Uncertainty models: $\mathcal{P}(h, \tilde{p}), \mathcal{V}(h, \tilde{v}).$

6 Example

State	Probability p_j	Cond. Prob. v_{1j}	Cond. Prob. v_{2j}	Cond. Prob. v_{3j}
(Cause of decline)	of that state	(Translocation)	(New reserve)	(Captive breeding)
		(a_1)	(a_2)	(a_3)
Poaching	0.1	0.3	0.25	0.9
Loss of habitat	0.3	0.1	0.2	0.2
Demographic	0.5	0.05	0.09	0.01
accidents				
Disease	0.1	0.1	0.1	0.4
Expected utility		$\sum_{j} v_{1j} p_j = 0.095$	$\sum_{j} v_{2j} p_j = 0.14$	$\sum_{j} v_{3j} p_j = 0.195$

Table 1: Estimated probabilities.

¶ From table 1 we see that action a_3 , captive breeding, has the greatest expected utility. The EU approach therefore recommends action a_3 . This is in fact the conservation strategy which has been recommended by conservation biologists who have studied the sumatran rhinoceros problem.

¶ However, we know that the robustness of maximal expectations is zero! That is:

$$0 = \hat{h}(a_1, 0.095) = \hat{h}(a_2, 0.14) = \hat{h}(a_3, 0.195)$$
(11)

That is, action a_1 cannot be relied upon to result, on the average, in utility 0.095. Likewise, action a_2 cannot be relied upon to result, on the average, in utility 0.14. Likewise, action a_3 cannot be relied upon to result, on the average, in utility 0.195. Infinitesimal errors in p or v may result in either better, or worse, average probability of survival.

¶ How much performance (probability of survival) must be foregone in order to obtain a reliable probability of survival?

Figure 1: Robustness curves for actions 1, 2 and 3.

 \P From the figure we note:

- 1. The trade-off between performance (demanded expected utility $E_{\rm c}$) and robustness to uncertainty.
- 2. The nominal optimal action, according to expected-utility theory, $a^{\star} = a_3$ (captive breeding), has zero robustness.
- 3. In fact the robustnesses of all the nominal expected utilities are zero.
- 4. Reversal of preference:
 - (a) For $E_c > 0.12$, the most robust action is captive breeding (a_3) .
 - (b) For $E_{\rm c} < 0.12$, the most robust action is extension of the current reserve (a_2) .
 - (c) For $E_{\rm c} < 0.04$ there is a preference reversal between a_1 and a_3 , but a_2 is still the option of choice.

In other words, the robust-optimal choice of an action depends on the performance which is required.