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1 Learning and Deciding

§ The outline of this section is summaried in a transparency, see p. 7.

¶When you study a decision problem and reach a decision to do such-and-such, you can be

said to have learned something.

¶ The process of reaching the decisions:

◦ “This bird is an albatross.”

◦ “That snark was a boojum.”

can each be seen as a process of learning something.

Decision: sorting out a vague and unclear situation.

A decision is the content of what we have learned.

¶We will consider the questions:

◦What is learning?

◦ How do the general aspects of learning pertain to decision processes?

¶ Learning can be viewed from at least 3 different perspectives:

◦ Content: what has been learned?

◦ Function: what effect does the learning

have on subsequent behavior?

◦ Structure: what are the processes by which learning occurs?
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¶ Piaget’s theory of intelligence:

◦ Focusses on structure and processes of thoughtful behavior.

◦ De-emphasizes content of intelligent thought.

◦ E.g.:

Study logical structure of a child’s discovery process.

Rather than

Study subjects which children are interested in discovering.

¶ In decision theory we focus much more on the

structure of the decision process

than on the content or function of specific decisions.

¶Another taxonomy of learning (also due to Piaget)

distinguishes between:

◦ Immediate acquisition and processing of information.

◦Modification of cognitive structures governing the learning process.

Examples:

• Classification: immediate acquisition of information.

◦ E.g. learning to identify albatrosses or snarks.

◦ E.g. learning that not all 4-legged fuzzy animals are dogs.

• Intellectual maturation: modification of cognitive structures.

◦ E.g. Learning that albatrosses evolved from proto-albatrosses,

rather than by being created from nothing.

◦ E.g. learning that taxonomic classification is ambiguous.
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¶ Rousseau: key to intellectual maturation is error.

Applying this concept of learning to decision processes,

the key questions are:

◦ How to decide a given decision algorithm is defective?

◦What constitutes evidence against a given decision model?

◦ How is such evidence used to improve the decision model?

A modern expression of the same idea is: falsification (Popper):

Improvement by exclusion of inadequate elements.

This is an evolutionary methodology.
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¶ Evolutionary theories are of two sorts:

• Historicist, deterministic, strongly predictive.

◦ Based on “laws” (natural, social, logical, etc.)

◦ Examples:

— All classical physics.

— Hegel: Historical dialectic: thesis, antithesis, synthesis.

— Marx: 5 irrevocable stages of history.

primitive, feudal, capitalist, socialist, communist.

— Darwin: biological evolution by survival of fittest.

— Freud: universal principals of human psychology:

Sex drive, dream symbols, super-ego, etc.

• Adaptive, interactive, undeterministic and unpredictable.

◦ Driven by non-causal innovation: “random”, un-lawlike.

◦ Examples:

— Darwin: biological evolution by random modification. (Gould)

— Some modern physics: quantum mechanics, chaotic systems.

— Popper:Piecemeal social engineering.

Unpredictability of intellectual discovery.

— Non-computability: E.g. Penrose’s toy universe:

1. Next state determined by, but not computable from, history.

2. Tiling problem: given a set of polygons, determine whether or not it will tile the plane.

There is no algorithm solution that solves this in finite time for all sets of polygons.

3. The “toy universe” progresses with this rule:

The state at time step n given by Sn, a set of polygons.

The universe moves to state (set) Sn+1 at t + 1 if Sn will tile the plane.

The universe moves to state (set) Sn+2 at t + 1 if Sn will not tile the plane.

This universe is deterministic but not computable.

We will want to keep track of both types of evolutionary methods.
1

1Penrose, Roger, Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press,
1994. See pp.29–33.
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¶We will study a two tiered decision situation:

◦ Lower level:

A decision algorithm is making operative decisions.

◦ Upper level:

IGDT supervises, modifies and improves the operative algorithm.

¶ In section 2 we will consider

info-gap supervision of a classifier.

Lower level: operative decision algorithm

assimilates and classifies data.

Upper level: Classifier is modified.

Limitation of the classifier: inadequacy of the info-gap model.

¶ Immediate learning:

Results of the classification.

¶ Structural Learning:

◦Modifying the info-gap model, (structural learning)

◦ Improving the classifier, (behavioral learning).
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§ Learning and deciding:

• Content.

• Function.

• Structure.

§ Piaget: structure, not content of children’s learning.

§ Piaget:

• Immediate acquisition of knowledge.

• Intellectual maturation.

§ Rousseau: Learning from error.

§ Popper:

• Falsification.

• Evolutionary process.

§ Evolutionary theories:

• Historicist, deterministic, predictive.

• Adaptive, interactive,uncertain, non-predictive.

§ 2-tiered decision process:

•Make operative decision.

•Modify decision algorithm.
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2 Info-Gap Supervision of a Classifier

2.1 Robustness of a Classifier

¶ Classification: use measured vector u

to select from among a number of classes.

¶ The problem:

◦ No class produces a unique u-vector.

◦ The u-vectors of distinct classes may be identical: classes overlap.

¶ Severe uncertainty: u-vectors for nth class is an info-gap model:

Un(h, ũn), h ≥ 0 (1)

¶ The class index can be taxonomically informative. E.g.

n = (730, 02, 1) (2)

represents the orthopedic pathology:

Acute osteomyelitis of the 2nd right metatarsal.

¶ Distance measure between classes, ‖ · ‖:
Degree of qualitative difference between the classes.

For instance:

‖n−m‖ = ‘large’ (3)

means that these classes are quite different.
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¶ Classification algorithm:

C(u) = n (4)

Measurement u interpreted as arising from class n.

¶ Robustness function for algorithm C:

ĥ(C, rc) = max {h : ‖C(u)− n‖ ≤ rc, for all u ∈ Un(h, ũn)

and for all n} (5)

¶ Note usual trade-off between ĥ and rc, fig. 1.

6

-

Good Poor
rc

Robustness, ĥ(q, rc)

Figure 1: Trade-off of robustness against performance.

¶ Two-tiered decision process:

• ĥ(C, rc) is “supervising” the classification alg. C.

• C(u) decides on the provenance of measurement u.

• In ĥ(C, rc) we consider C as a decision function:

◦ ĥ depends on structure of classifier.

◦ ĥ can be improved by modifying C.

¶ Calibrate ĥ(C, rc) in terms of asymptotic robustness, which we now explain.
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2.2 Asymptotic Robustness

¶ Definition:

U (h, ũ) is an unbounded info-gap model if:

For any vector u,

There exists an h such that

u ∈ U (h, ũ).

Most of the common info-gap models are unbounded. E.g.:

U (h, ũ) =
{

u : (u− ũ)TW(u− ũ) ≤ h2
}

, h ≥ 0 (6)

¶ If the info-gap models representing class uncertainty

are unbounded,

Then any u could come from any info-gap model.

This is the cause of classification ambiguity.

¶ Asymptotic robustness:

ĥ∞ = max {h : Un(h, ũn) ∩ Um(h, ũm) = ∅ for all m 6= n} (7)
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¶Meaning of ĥ∞:

◦ ĥ∞ independent of classification algorithm.

◦ ĥ∞ depends only on the info-gap models.

-

6

U1(h, ũ1) U2(h, ũ2)

h < ĥ∞

r
u

Figure 2: Non-intersecting info-gap models, illustrating unambiguous classification for h < ĥ∞.

¶ If the info-gap models accurately represent the uncertainty.

And ifh < ĥ∞, (fig. 2)

then any measured u is consistent with exactly one info-gap model.

◦ In this case an exhaustive-search algorithm will always choose the correct class.

◦ Some other algorithm may also always choose the correct class.

◦ A different classifier may sometimes err.

-

6

U1(h, ũ1) U2(h, ũ2)

h > ĥ∞

ru

Figure 3: Intersecting info-gap models, illustrating ambiguous classification for h > ĥ∞.

¶ If the info-gap models accurately represent the uncertainty.

And ifh > ĥ∞, (fig. 3)

then some measured u’s are consistent with several info-gap models.

◦ In this case no algorithm will always choose the correct class.

◦ Any u in the intersection can “fool” any algorithm.
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¶Meaning of ĥ∞:

◦ ĥ∞: limiting level of info-gap beyond which classification ambiguity occurs.

◦ ĥ∞: limiting error-free robustness of any realizable algorithm C(u).

◦ For any classifier C(u):

ĥ(C, 0) ≤ ĥ∞

◦ If ĥ(C, 0)� ĥ∞ then C could be improved substantially.

◦ If ĥ(C, 0) only slightly < ĥ∞

then C is about as good as can be demanded with these info-gap models.

◦ If the info-gap models can be improved, then ĥ∞ can be improved.

¶ Value judgment:

Calibration of ĥ(C, 0) in terms of ĥ∞ is an analogical inference

as discussed in lecture on value judgments.
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2.3 Robust Optimal Classifier

¶Definition. C(u) is a robust optimal classifier if:

ĥ(C, 0) = ĥ∞ (8)

No algorithm can have greater robustness at rc = 0.

¶Why are we interested in robust optimal classifiers?

◦ Their performance is “optimal”.

◦We will see their pivotal importance in

up-dating the info-gap models

in the structural learning of a classification task.

¶Definition. Gap function:

Γ(u) = min {h : u ∈ U (h, ũ)} (9)

◦ Γ(u) is the lowest h at which

u is consistent with U (h, ũ).

◦ If Γ(u) is small

then u is highly consistent with U (h, ũ).

◦ If Γ(u) is large

then u arises from U (h, ũ)

only under extraordinary circumstances.

Given a collection of info-gap models, Un(h, ũn)

We denote their gap functions by Γn(u), respectively.
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¶ Consider the following classification algorithm:

C(u) = n if Γn(u) ≤ Γm(u) for all m 6= n (10)

(With some tie-breaking rule.)

This is a nearest-neighbor decision rule.

Probabilistic analog: maximum likelihood decision algorithm.

¶ This robust optimal classifier depends upon the structure of the info-gap models.
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¶We will see that eq.(10) is a robust optimal classifier.

We must show that ĥ(C, 0) = ĥ∞.

In other words, we must show that:

If, for some h:

Un(h, ũn) ∩ Um(h, ũm) = ∅ for all m 6= n (11)

then, for the same h:

C(u) = n for all u ∈ Un(h, ũn) (12)

Brief proof:

1. If eq.(11) holds,

then an observed u belongs to one and only one info-gap model.

at this h.

2. Suppose u ∈ Un(h, ũn).

Thus Γn(u) ≤ h.

3. But u 6∈ Um(h, ũm) for all m 6= n.

Thus Γm(u) > h.

4. Hence Γn(u) < Γm(u)

Thus C(u) = n.
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2.4 Robust Severe Tests of Truth

¶ Current status:

◦We have found a robust optimal classifier.

◦ If the underlying info-gap models are correct,

◦ then no other algorithm has greater error-free robustness.

◦ The task: “Improve the classifier.”

◦ thus becomes the new task:

◦ “Improve the info-gap models.”

¶ But perhaps the info-gap models are accurate.

We don’t want to tamper with them arbitrarily.

The questions thus become:

◦What constitutes evidence against a set of info-gap models?

◦ How to use that evidence to up-date the info-gap models.?

¶Methodology:

◦ Falsification of an info-gap model is based on a criterion of truth.

◦ Search for truer models is based on a criterion of error.

¶ In this subsection we study severe test of truth as a tool for falsifying info-gap models.

¶ In the next subsection we study up-dating info-gap models based on a criterion of error.

¶ Truth and falsity are complements.
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¶ Learning data:

Measurements u1, . . . , uK of known provenance.

uk came from the nkth info-gap model, Unk(h, ũnk).

¶ “Reasonable data” assumption:

None of the measurements is “extraordinary” or “pathological”.

¶ Correct classification by the robust optimal classifier of eq.(10)

requires:

Γnk(uk) < Γni(uk) (13)

for all k = 1, . . . , K and for all i 6= k.

¶ So, still under “reasonable data” assumption, suppose:

Γni(uk) ≤ Γnk(uk) (14)

for some k and for some i 6= k.

This means that uk is mis-classified.

This is evidence against one of both of the info-gap models:

Uni(h, ũni) or Unk(h, ũnk) (15)
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¶ If all the learning data are “reasonable”, then modify the info-gap models

so the learning data are correctly classified.

¶ That is, a severe test of the info-gap models is:

A set of info-gap models is accepted as provisionally true

if only extraordinary data are mis-classified by a robust-optimal classifier.

¶ Stated as an hypothesis test:

◦ The info-gap models have passed a “severe test of truth”

if they correctly classify all but extraordinary data.

◦ Conversely:

We reject a collection of info-gap models if they do not pass this test.



\risk\lectures\lrn02.tex LEARNING 19

2.5 Up-Dating Info-Gap Models

¶ Given:

◦ Learning data: uk from class nk, k = 1, . . . , K.

◦ Uncertainty in the measurements of class n

is represented (to the best of our knowledge) by Un(h, ũn).

◦ Gap function for the nth info-gap model, eq.(9) on p. 13, is Γn(u).

¶ Now suppose:

Robust optimal classifier, eq.(10), errs on one or more elements in the learning set.

That is, the classifier fails the severe test.

What is to be done?

¶ Three types of corrective action are possible:

◦ Basic event-classes are wrong and must be revised.

◦ Structure of the info-gap models is wrong and must be revised.

◦ Parameters of the info-gap models are wrong and must be revised.

¶We will consider the last option:

often suitable for severe lack of information.

¶ q = vector of parameters of info-gap models.

= decision vector.

¶We will formulate an empirical robustness function

which depends on q and with which we up-date the info-gap models.
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¶ Empirical robustness function ĥe(q, rc) for classification algorithm C(u):

Estimate of the greatest h for which C(u) errs no more than rc.

¶ ĥe(q, rc) is evaluated from

the performance of C(u) in sorting the learning data (u1, n1), . . . , (uK, nK).

¶Measurement uk comes from class nk.

Γnk(uk) is the gap function for the corresponding info-gap model Unk(h, ũnk).

ĥe(q, rc) is estimated from the gap functions evaluated on the learning data:

ĥe(q, rc) = max
{

Γni(ui) : ‖C(uk)− nk‖ ≤ rc if Γnk(uk) ≤ Γni(ui),

k = 1, . . . , K, i = 1, . . . , K
}

(16)

(ĥe(q, rc) = 0 if the set defined in (16) is empty.)

¶ Rough explanation:

ĥe(q, rc) is the greatest “uncertainty horizon” within which the learning data are all classified

with error no greater than rc.

¶More precisely,

ĥe(q, rc) is the value of thegreatest measured gap function, Γni(ui),

for which all measured vectors uk (including ui)

whose corresponding gap functions are no greater than Γni(ui),

are classified with error no larger than rc.
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¶ Further explanation. The condition:

Γnk(uk) ≤ Γni(ui) (17)

is equivalent to:

uk ∈ Unk(Γni(ui), ũnk) (18)

Thus all measurements in the learning set which satisfy:

uk ∈ Unk(ĥe(q, rc), ũnk) (19)

are classified by C(u) with error no greater than rc.

There may be some other data points that are classified with greater error.

¶ The error-free (rc = 0) empirical robustness function is:

ĥe(q, 0) = max
{

Γni(ui) : if Γnk(uk) ≤ Γni(ui),

then C(uk) = nk for all

k = 1, . . . , K, i = 1, . . . , K
}

(20)

¶ In particular, for the robust-optimal classifier in eq.(10) on p. 14,

the error-free empirical robustness function is:

ĥe(q, 0) = max
{

Γni(ui) : if Γnk(uk) ≤ Γni(ui),

then Γnk(uk) < Γnj(uk) for all

j 6= k, k = 1, . . . , K, i = 1, . . . , K
}

(21)
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¶ An empirical robustness function can take any non-negative value.

¶ ĥe(q, 0) can be small:

◦ If the data are very unusual,

or if the info-gap models are very unrealistic.

Then few or none of the learning data will be correctly classified.

¶ ĥe(q, 0) can be small for an utterly opposite reason:

◦ If the data are highly compatible with the info-gap models

then a low h will be sufficient to “catch” the data.

¶ ĥe(q, 0) can be large:

◦ If the info-gap models poorly reflect ambient uncertainty

then they must be greatly distended

in order to “catch” the learning data.

¶ ĥe(q, 0) can be large for an utterly opposite reason:

◦ If the info-gap models well reflect ambient uncertainty

then C(u) will “catch” even extreme data at large h.
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¶ In our earlier study of the “regular” robustness function ĥ(q, rc)

we learned that “bigger is better”.

¶ However, with the empirical robustness function ĥe(q, rc)

it is not necessarily true that “bigger is better”

when ĥe(q, rc) is used to up-date info-gap models.

We must know why ĥe(q, rc) is large.

¶ A large value of ĥe(q, rc) may be either good or bad.

We will still vary the decision vector q to modify ĥe(q, rc).

However, a combined increase-and-decrease strategy must be employed.

¶ Special interpretation of robustness function

is needed when up-dating an info-gap model.

Why?

Why is this so different from all other decision problems?
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¶ Explanation:

◦ All decisions with uncertainty (unlike deductions)

involve judgments of pragmatic truth based on severe tests.

◦ A severe test depends upon an assessment of uncertainty.

That is, a severe test employs an uncertainty model.

◦Why? (re-iterate previous discussion of severe tests):

— A proposition is (pragmatically) true

to the extent that only highly uncertain evidence

contradicts the proposition.

— Thus one must be able to assess degrees of uncertainty.

— For this one uses ĥ based on an info-gap model

or a probability function in statistical decisions.

◦When the proposition being tested is:

“This uncertainty model is false.”

The severe test collapses: one has no uncertainty model to use.
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2.6 Plantar Pressures in Metatarsal Pathology

¶ Plantar pressures vary :

◦ During gait.

◦ Across the sole of the foot.

◦ Between individuals.

◦ Between activities.

◦ Due to pathology.

¶We will up-date an info-gap model for

pathological plantar pressure distribution.

¶ Common orthopedic pathology: hallux valgus.

◦ Enlarged angle between 1st metatarsus and 1st phalanx.

◦ Can produce excessive pressure on 1st metatarsal-phalangeal joint.

◦ Surgical correction needed in extreme cases.

¶We will consider two info-gap models:

◦ Normal plantar pressures: U 1(h, ũ1), h ≥ 0.

◦ Pathological plantar pressures: U 2(h, ũ2), h ≥ 0.

¶We will consider only the pressures under

1st and 5th metatarsal-phalangeal joint.

¶ In the normal condition 1st and 5th plantar pressures are:

◦ roughly equal.

◦ display wide fluctuations between:

— people.

— activities.

¶ In the pathological condition 1st and 5th plantar pressures are:

◦ quite different.

◦ display wide fluctuations between:

— people.

— activities.



\risk\lectures\lrn02.tex LEARNING 26

¶ u = (u1, u2)
T = vector of uncertain plantar pressures.

¶ Info-gap models:

U 1(h, ũ1) =
{

u = ũ1 + φ : φTφ ≤ h2
}

, h ≥ 0 (22)

U 2(h, ũ2) =
{

u = ũ2 + φ : φTWφ ≤ h2
}

, h ≥ 0 (23)

W is a positive definite diagonal matrix: W = diag(w1, w2).

¶ Nominal pressures in the two states, relative to average body weight:

ũ1 =

(
1
1

)
, ũ2 =

(
1.3
0.8

)
(24)

¶ Gap function for measurement u, defined in eq.(9) on p. 13:

Least h for which the info-gap model

is consistent with the measurement.

Gap function Γ1(u) for healthy-state:

Γ1(u) =
√
(u− ũ1)T(u− ũ1) (25)

Gap function Γ2(u) for the pathological state:

Γ2(u) =
√
(u− ũ2)TW(u− ũ2) (26)

¶ Given learning data, we use these gap functions to:

◦ Evaluate the empirical robustness of the robust-optimal classifier.

◦ Up-date the pathological info-gap model.
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¶ Learning data:

◦ K pathological pressure vectors, u1, . . . , uK.

◦ K = 6: Open circles in fig. 4.

◦ Bullets are nominal vectors.

-

6

1st tarsal pressure

5th
tarsal

pressure

r r

1 1.3

1

0.8

0
0

ũ1

ũ2 bb
b b

bb

Figure 4: Nominal measurements (•) ũ1 and ũ2, and learning data (◦) u1, . . . , uK.

¶ Empirical error-free empirical robustness eq.(21) on p. 21, of the robust-optimal classifier:

Empirical estimate of the maximum h up to which pathology is not mis-classified:

ĥe(q, 0) = max {Γ2(uk) : Γ2(uk) < Γ1(uk), k = 1, . . . , K} (27)

If this set is empty then ĥe(q, 0) = 0.

¶ Parameters to up-date: diagonal shape matrix, so q = (w1, w2).

Goal: Up-date U 2(h, ũ2) by varying shape of ellipse.

Area of ellipse: π/
√

w1w2.

Thus: vary w1 and adjust w2 according to w2 = 1/w1.
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¶ Calculated ĥe vs. shape parameter w1: fig. 5.

-

6a

b

c

d
e

w1
0 0.60.3

ĥe(w1, 0)

0.1

0.2

0

Figure 5: Empirical robustness function ĥe(w1, 0) vs. shape parameter w1.

¶ Discussion of fig. 5:

◦ Only Γ2 (pathological) varies with w1.

◦ From a to b:

— Only 3 points correctly classified.

— ĥe decreasing: U 2 improving: becoming better adapted to data.

◦ Discontinuous jump from b to c:

— Additional datum correctly classified.

— Gap function better, even though ĥe is now larger.

◦ From c to d:

— Info-gap model improving:

— Info-gap model adjusting to the 4 captured points.

◦ Discontinuous slope at d:

— Different captured point is now critical.

◦ From d to e:

— Info-gap model deteriorating.
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¶ Optimal shape matrix:

◦ Local minimum of ĥe.

◦ Global minimum of ĥe not optimum.

◦ Optimum: w1 = 0.38 and w2 = 1/w1 = 2.61.

◦ Semi-axis ratio:
√

w2/w1 = 2.62.

◦ Horizonal axis is long axis of the ellipse.

¶ Summary. Info-gap model optimized by:

◦ Locally minimizing ĥe.

◦ Identifying reason for minimum.

◦ Different from “bigger is better” for “regular” ĥ.
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3 Acoustic Noise

¶ Not all decisions are classifications, and not all learning is supervision of a classifier.

¶ Problem: Noise suppression in acoustic cavity.

• Variable and uncertain noise sources.

•Measure sound pressure at M points.

• Impose acoustic signal from actuators.

• Good performance if total residual sound energy is small.

¶ Info-gap model of acoustic source.

f (x) = unknown actual acoustic pressure at position x in cavity.

f̃ (x) = known estimated acoustic pressure at position x in cavity.

U (h, f̃ ) = info-gap model for uncertainty in f (x).

U (h, f̃ ) underlies choice of imposed acoustic signal.

¶ Learning:

• Given measured acoustic pressures u1, . . . , uM at positions x1, . . . , xM.

• Do these measurements provide evidence against the info-gap model U (h, f̃ )?

• If the info-gap model is indicted, how do we improve it?

• q = vector of parameters or properties of the info-gap model which can be modified to

improve U (h, f̃ ), if necessary.
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3.1 Empirical Robustness

¶ Gap function: compatibility of datum um with info-gap model U (h, f̃ ):

Γ(um) = min
{

h : f (xm) = um for some f (x) ∈ U (h, f̃ )
}

(28)

¶ Empirical robustness function.

• “Reasonable” measurement: not extraordinary or unusual.

• U (h, f̃ ) compatible with data if gap functions of reasonable measurements are not large.

• Empirical robustness function:

ĥe(q, rc) = max
{

Γ(um) : |un| ≤ rc if Γ(un) ≤ Γ(um),

m = 1, . . . , M, n = 1, . . . , M
}

(29)

• Explanation:

◦ |un| ≤ rc means un is not extraordinary measurement.

◦ Γ(un) ≤ Γ(um) means un at least as compatible with U (h, f̃ ) as um.

◦ Thus ĥe(q, rc) is the greatest horizon of uncertainty at which measurements are not

extraordinary.

• ĥe(q, rc) assesses fidelity of U (h, f̃ ) to the measurements, and is the basis for updating the

info-gap model.
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¶ ĥe(q, rc) can be large for either of two opposite reasons:

• U (h, f̃ ) is a true and accurate characterization of the acoustic uncertainty, and is highly

compatible with all the data, even extreme measurements.

• U (h, f̃ ) is so erroneous that extremely large gap-function values are needed to capture

even a few data points.

¶ Up-dating U (h, f̃ ):

• ĥe(q, rc) depends on info-gap model parameters q.

•We must understand why ĥe(q, rc) is changing as we modify q.

3.2 Up-Dating the Acoustic Uncertainty Model

¶ 1-dimensional acoustic cavity: 0 ≤ x ≤ 1.

¶ Acoustic pressure field, f (x).

• f (x) is complex, and changing with circumstances.

• Roughly constant, or biased predominantly to left or right.

• Envelope-bound info-gap model:

U (h, 0) = { f (x) : | f (x)| ≤ hψ(x)} , h ≥ 0 (30)

• Linear envelope functions:

ψ(x) = q
(

x− 1
2

)
+ 1 (31)

◦ All these functions cross (0.5, 1).

◦ Slope determined by q which must be in [−2, 2] to assure non-negativity.
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Figure 6: Empirical
robustness function
ĥe(q, 2.5) vs. slope param-
eter q.

Figure 7: Six pressure
measurements (◦) and the
updated envelope func-
tion ψ(x) with q = 1.63.

¶Measured pressures at x = 0.05 and x = 0.95.

x = 0.05: 0.07, 0.21, 0.33.

x = 0.95: 1.83, 1.97, 2.15.

¶ Empirical robustness function in fig. 6. rc = 2.5. All data captured.

• Left branch, a to b:

◦ robustness decreasing as q rises from 0 to 1.63.

◦ Info-gap model improving as it becomes more consistent with measurements.

• Right branch, b to c:

◦ robustness increasing as q rises above 1.63.

◦ Info-gap model degenerating as it becomes less consistent with measurements.

◦ Saw-tooth for larger q values as data points are “lost”.

• q = 1.63 is robust-satisficing value of envelope slope.

• Essentially same results with any rc large enough to capture at least one value on both

sides of cavity.

¶ Optimal slope, fig. 7.

• Positive slope due to predominantly right-side pressure field.

• Clearly not least-squares best-fit.

• No presumption of linear pressure field.


