LEARNING 1

Lecture Notes on Info-Gap Learning

Yakov Ben-Haim
Yitzhak Moda'i Chair in Technology and Economics
Faculty of Mechanical Engineering
Technion — Israel Institute of Technology
Haifa 32000 Israel
http://info-gap.com http://www.technion.ac.il/yakov
yakov@technion.ac.il

Source material: Yakov Ben-Haim, 2006, *Info-Gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd edition, Academic Press. Chapter 8.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1	Lea	rning and Deciding	2
2	Info-Gap Supervision of a Classifier		8
	2.1	Robustness of a Classifier	8
	2.2	Asymptotic Robustness	10
	2.3	Robust Optimal Classifier	13
	2.4	Robust Severe Tests of Truth	16
	2.5	Up-Dating Info-Gap Models	19
	2.6	Plantar Pressures in Metatarsal Pathology	25
3	Acoustic Noise		30
	3.1	Empirical Robustness	31
	3 2	Un-Dating the Acoustic Uncertainty Model	32

⁰\lectures\info-gap-methods\lectures\lrn02.tex 20.1.2015 © Yakov Ben-Haim 2015.

1 Learning and Deciding

- § The outline of this section is summaried in a transparency, see p. 7.
- ¶ When you study a decision problem and reach a decision to do such-and-such, you can be said to have learned something.
- ¶ The process of reaching the decisions:
- o "This bird is an albatross."
- "That snark was a boojum."can each be seen as a process of learning something.

Decision: sorting out a vague and unclear situation.

A decision is the content of what we have learned.

- ¶ We will consider the questions:
 - o What is learning?
 - How do the general aspects of learning pertain to decision processes?
- ¶ Learning can be viewed from at least 3 different perspectives:
 - Content: what has been learned?
 - o Function: what effect does the learning
 - have on subsequent behavior?
 - Structure: what are the processes by which learning occurs?

- ¶ Piaget's theory of intelligence:
 - o Focusses on structure and processes of thoughtful behavior.
 - o De-emphasizes content of intelligent thought.
 - ∘ E.g.:

Study logical structure of a child's discovery process.

Rather than

Study subjects which children are interested in discovering.

¶ In decision theory we focus much more on the

structure of the decision process

than on the **content** or **function** of specific decisions.

- ¶Another taxonomy of learning (also due to Piaget) distinguishes between:
 - o Immediate acquisition and processing of information.
 - Modification of cognitive structures governing the learning process.

Examples:

- Classification: immediate acquisition of information.
 - E.g. learning to identify albatrosses or snarks.
 - E.g. learning that not all 4-legged fuzzy animals are dogs.
- Intellectual maturation: modification of cognitive structures.
 - E.g. Learning that albatrosses evolved from proto-albatrosses, rather than by being created from nothing.
 - E.g. learning that taxonomic classification is ambiguous.

¶ Rousseau: key to intellectual maturation is **error**.

Applying this concept of learning to decision processes, the key questions are:

- How to decide a given decision algorithm is **defective**?
- o What constitutes **evidence against** a given decision model?
- o How is such evidence used to improve the decision model?

A modern expression of the same idea is: **falsification** (Popper): Improvement by exclusion of inadequate elements.

This is an **evolutionary methodology.**

- ¶ Evolutionary theories are of two sorts:
 - Historicist, deterministic, strongly predictive.
 - o Based on "laws" (natural, social, logical, etc.)
 - Examples:
 - All classical physics.
 - Hegel: Historical dialectic: thesis, antithesis, synthesis.
 - Marx: 5 irrevocable stages of history.primitive, feudal, capitalist, socialist, communist.
 - Darwin: biological evolution by survival of fittest.
 - Freud: universal principals of human psychology: Sex drive, dream symbols, super-ego, etc.
 - Adaptive, interactive, undeterministic and unpredictable.
 - o Driven by non-causal innovation: "random", un-lawlike.
 - Examples:
 - Darwin: biological evolution by random modification. (Gould)
 - Some modern physics: quantum mechanics, chaotic systems.
 - Popper:Piecemeal social engineering.
 - Unpredictability of intellectual discovery.
 - Non-computability: E.g. Penrose's toy universe:
 - 1. Next state determined by, but not computable from, history.
 - There is no algorithm solution that solves this in finite time for all sets of polygons.

2. Tiling problem: given a set of polygons, determine whether or not it will tile the plane.

3. The "toy universe" progresses with this rule:

The state at time step n given by S_n , a set of polygons.

The universe moves to state (set) S_{n+1} at t+1 if S_n will tile the plane.

The universe moves to state (set) S_{n+2} at t+1 if S_n will not tile the plane.

This universe is deterministic but not computable.

We will want to keep track of both types of evolutionary methods.

1

¹Penrose, Roger, *Shadows of the Mind: A Search for the Missing Science of Consciousness*. Oxford University Press, 1994. See pp.29–33.

- ¶ We will study a two tiered decision situation:
 - o Lower level:

A decision algorithm is making operative decisions.

o Upper level:

IGDT supervises, modifies and improves the operative algorithm.

¶ In section 2 we will consider info-gap supervision of a classifier.

Lower level: operative decision algorithm

assimilates and classifies data.

Upper level: Classifier is modified.

Limitation of the classifier: inadequacy of the info-gap model.

- ¶ Immediate learning: Results of the classification.
- ¶ Structural Learning:
 - \circ Modifying the info-gap model, (structural learning)
 - o Improving the classifier, (behavioral learning).

- **§** Learning and deciding:
 - Content.
 - Function.
 - Structure.
- § Piaget: structure, not content of children's learning.
- § Piaget:
 - Immediate acquisition of knowledge.
 - Intellectual maturation.
- § Rousseau: Learning from error.
- § Popper:
 - Falsification.
 - Evolutionary process.
- \S Evolutionary theories:
 - Historicist, deterministic, predictive.
 - Adaptive, interactive, uncertain, non-predictive.
- **§ 2-tiered decision process:**
 - Make operative decision.
 - Modify decision algorithm.

2 Info-Gap Supervision of a Classifier

2.1 Robustness of a Classifier

- \P Classification: use measured vector u to select from among a number of classes.
- ¶ The problem:
 - No class produces a unique *u*-vector.
 - The *u*-vectors of distinct classes may be identical: classes overlap.
- ¶ Severe uncertainty: *u*-vectors for *n*th class is an info-gap model:

$$\mathcal{U}_n(h,\widetilde{u}_n), \ h \ge 0 \tag{1}$$

¶ The class index can be taxonomically informative. E.g.

$$n = (730, 02, 1) \tag{2}$$

represents the orthopedic pathology:

Acute osteomyelitis of the 2nd right metatarsal.

¶ Distance measure between classes, $\|\cdot\|$:

Degree of qualitative difference between the classes.

For instance:

$$||n - m|| = 'large' \tag{3}$$

means that these classes are quite different.

¶ Classification algorithm:

$$C(u) = n \tag{4}$$

Measurement u interpreted as arising from class n.

¶ Robustness function for algorithm *C*:

$$\widehat{h}(C, r_{c}) = \max\{h : \|C(u) - n\| \le r_{c}, \text{ for all } u \in \mathcal{U}_{n}(h, \widetilde{u}_{n})$$
and for all $n\}$
(5)

¶ Note usual trade-off between \hat{h} and r_c , fig. 1.

Figure 1: Trade-off of robustness against performance.

- ¶ Two-tiered decision process:
 - $\hat{h}(C, r_c)$ is "supervising" the classification alg. C.
 - C(u) decides on the provenance of measurement u.
 - In $\hat{h}(C, r_c)$ we consider C as a decision function:
 - \circ \widehat{h} depends on structure of classifier.
 - $\circ \hat{h}$ can be improved by modifying *C*.
- ¶ Calibrate $\hat{h}(C, r_c)$ in terms of asymptotic robustness, which we now explain.

2.2 Asymptotic Robustness

¶ Definition:

 $\mathcal{U}(h, \widetilde{u})$ is an **unbounded info-gap model** if:

For any vector *u*,

There exists an *h* such that

$$u \in \mathcal{U}(h, \widetilde{u}).$$

Most of the common info-gap models are unbounded. E.g.:

$$\mathcal{U}(h,\widetilde{u}) = \left\{ u : (u - \widetilde{u})^T W (u - \widetilde{u}) \le h^2 \right\}, \quad h \ge 0$$
(6)

 \P If the info-gap models representing class uncertainty are unbounded,

Then any *u* could come from any info-gap model.

This is the cause of **classification ambiguity**.

¶ Asymptotic robustness:

$$\widehat{h}_{\infty} = \max\{h: \, \mathcal{U}_n(h, \widetilde{u}_n) \, \cap \, \mathcal{U}_m(h, \widetilde{u}_m) = \emptyset \, \text{ for all } \, m \neq n\}$$
 (7)

¶ Meaning of \widehat{h}_{∞} :

- $\circ \hat{h}_{\infty}$ independent of classification algorithm.
- $\circ \hat{h}_{\infty}$ depends only on the info-gap models.

Figure 2: Non-intersecting info-gap models, illustrating unambiguous classification for $h < \hat{h}_{\infty}$.

¶ If the info-gap models accurately represent the uncertainty.

And if
$$h < \hat{h}_{\infty}$$
, (fig. 2)

then any measured *u* is consistent with exactly one info-gap model.

- o In this case an exhaustive-search algorithm will always choose the correct class.
- o Some other algorithm may also always choose the correct class.
- o A different classifier may sometimes err.

Figure 3: Intersecting info-gap models, illustrating ambiguous classification for $h > \hat{h}_{\infty}$.

¶ If the info-gap models accurately represent the uncertainty.

And if
$$h > \hat{h}_{\infty}$$
, (fig. 3)

then some measured u's are consistent with several info-gap models.

- o In this case **no** algorithm will always choose the correct class.
- Any *u* in the intersection can "fool" any algorithm.

¶ Meaning of \hat{h}_{∞} :

- \circ \widehat{h}_{∞} : limiting level of info-gap beyond which classification ambiguity occurs.
- $\circ \hat{h}_{\infty}$: limiting error-free robustness of any realizable algorithm C(u).
- \circ For any classifier C(u):

$$\widehat{h}(C,0) \leq \widehat{h}_{\infty}$$

- ∘ If $\hat{h}(C,0)$ ≪ \hat{h}_{∞} then C could be improved substantially.
- ∘ If $\hat{h}(C,0)$ only slightly $<\hat{h}_{\infty}$

then *C* is about as good as can be demanded with these info-gap models.

 \circ If the info-gap models can be improved, then \widehat{h}_{∞} can be improved.

¶ Value judgment:

Calibration of $\widehat{h}(C,0)$ in terms of \widehat{h}_{∞} is an **analogical inference** as discussed in lecture on value judgments.

2.3 Robust Optimal Classifier

¶Definition. C(u) is a **robust optimal classifier** if:

$$\widehat{h}(C,0) = \widehat{h}_{\infty} \tag{8}$$

No algorithm can have greater robustness at $r_c = 0$.

- ¶ Why are we interested in robust optimal classifiers?
 - o Their performance is "optimal".
 - We will see their pivotal importance in up-dating the info-gap models in the structural learning of a classification task.

¶Definition. Gap function:

$$\Gamma(u) = \min \left\{ h : u \in \mathcal{U}(h, \widetilde{u}) \right\} \tag{9}$$

- \circ Γ(u) is the lowest h at which u is consistent with $U(h, \widetilde{u})$.
- ∘ If $\Gamma(u)$ is small then u is highly consistent with $U(h, \tilde{u})$.
- o If $\Gamma(u)$ is large then u arises from $\mathcal{U}(h, \widetilde{u})$ only under extraordinary circumstances.

Given a collection of info-gap models, $U_n(h, \widetilde{u}_n)$ We denote their gap functions by $\Gamma_n(u)$, respectively. \P Consider the following classification algorithm:

$$C(u) = n \text{ if } \Gamma_n(u) \le \Gamma_m(u) \text{ for all } m \ne n$$
 (10)

(With some tie-breaking rule.)

This is a nearest-neighbor decision rule.

Probabilistic analog: maximum likelihood decision algorithm.

¶ This robust optimal classifier depends upon the structure of the info-gap models.

¶ We will see that eq.(10) is a **robust optimal classifier**.

We must show that $\widehat{h}(C,0) = \widehat{h}_{\infty}$.

In other words, we must show that:

If, for some *h*:

$$\mathcal{U}_n(h, \widetilde{u}_n) \cap \mathcal{U}_m(h, \widetilde{u}_m) = \emptyset \text{ for all } m \neq n$$
 (11)

then, for the same *h*:

$$C(u) = n \text{ for all } u \in \mathcal{U}_n(h, \widetilde{u}_n)$$
 (12)

Brief proof:

- 1. If eq.(11) holds, then an observed u belongs to one and only one info-gap model. at this h.
- 2. Suppose $u \in \mathcal{U}_n(h, \widetilde{u}_n)$. Thus $\Gamma_n(u) \leq h$.
- 3. But $u \notin \mathcal{U}_m(h, \widetilde{u}_m)$ for all $m \neq n$. Thus $\Gamma_m(u) > h$.
- 4. Hence $\Gamma_n(u) < \Gamma_m(u)$ Thus C(u) = n.

2.4 Robust Severe Tests of Truth

- ¶ Current status:
 - We have found a robust optimal classifier.
 - o If the underlying info-gap models are correct,
 - o then no other algorithm has greater error-free robustness.
 - The task: "Improve the classifier."
 - o thus becomes the new task:
 - o "Improve the info-gap models."
- ¶ But perhaps the info-gap models are accurate.

We don't want to tamper with them arbitrarily.

The questions thus become:

- What constitutes evidence against a set of info-gap models?
- o How to use that evidence to **up-date** the info-gap models.?
- ¶ Methodology:
 - o Falsification of an info-gap model is based on a criterion of truth.
 - Search for truer models is based on a criterion of error.
- ¶ In this subsection we study **severe test of truth** as a tool for falsifying info-gap models.
- ¶ In the next subsection we study **up-dating info-gap models** based on a criterion of error.
- ¶ Truth and falsity are **complements**.

¶ Learning data:

Measurements $u_1, ..., u_K$ of known provenance. u_k came from the n_k th info-gap model, $\mathcal{U}_{n_k}(h, \widetilde{u}_{n_k})$.

- ¶ "Reasonable data" assumption:

 None of the measurements is "extraordinary" or "pathological".
- \P Correct classification by the robust optimal classifier of eq.(10) requires:

$$\Gamma_{n_k}(u_k) < \Gamma_{n_i}(u_k) \tag{13}$$

for all k = 1, ..., K and for all $i \neq k$.

¶ So, still under "reasonable data" assumption, suppose:

$$\Gamma_{n_i}(u_k) \le \Gamma_{n_k}(u_k) \tag{14}$$

for some k and for some $i \neq k$.

This means that u_k is mis-classified.

This is **evidence against** one of both of the info-gap models:

$$\mathcal{U}_{n_i}(h, \widetilde{u}_{n_i}) \text{ or } \mathcal{U}_{n_k}(h, \widetilde{u}_{n_k})$$
 (15)

- ¶ If all the learning data are "reasonable", then modify the info-gap models so the learning data are correctly classified.
- ¶ That is, a **severe test** of the info-gap models is:
 A set of info-gap models is accepted as **provisionally true**if only extraordinary data are mis-classified by a robust-optimal classifier.

¶ Stated as an **hypothesis test:**

- The info-gap models have passed a **"severe test of truth"** if they correctly classify all but extraordinary data.
- Conversely:We reject a collection of info-gap models if they do not pass this test.

2.5 Up-Dating Info-Gap Models

¶ Given:

- \circ Learning data: u_k from class n_k , k = 1, ..., K.
- \circ Uncertainty in the measurements of class n is represented (to the best of our knowledge) by $\mathcal{U}_n(h, \widetilde{u}_n)$.
- \circ Gap function for the *n*th info-gap model, eq.(9) on p. 13, is $\Gamma_n(u)$.

¶ Now suppose:

Robust optimal classifier, eq.(10), errs on one or more elements in the learning set.

That is, the classifier fails the severe test.

What is to be done?

- ¶ Three types of corrective action are possible:
 - o Basic event-classes are wrong and must be revised.
 - o Structure of the info-gap models is wrong and must be revised.
 - o Parameters of the info-gap models are wrong and must be revised.
- ¶ We will consider the last option: often suitable for severe lack of information.
- ¶ q = vector of parameters of info-gap models.
 - = decision vector.
- ¶ We will formulate an **empirical robustness function** which depends on q and with which we up-date the info-gap models.

- ¶ Empirical robustness function $\hat{h}_{e}(q, r_{c})$ for classification algorithm C(u): Estimate of the greatest h for which C(u) errs no more than r_{c} .
- $\P \ \widehat{h}_{e}(q, r_{c})$ is evaluated from the performance of C(u) in sorting the learning data $(u_{1}, n_{1}), \ldots, (u_{K}, n_{K})$.
- ¶ Measurement u_k comes from class n_k . $\Gamma_{n_k}(u_k)$ is the gap function for the corresponding info-gap model $\mathcal{U}_{n_k}(h, \widetilde{u}_{n_k})$. $\widehat{h}_{\mathrm{e}}(q, r_{\mathrm{c}})$ is estimated from the gap functions evaluated on the learning data:

$$\widehat{h}_{e}(q, r_{c}) = \max \{ \Gamma_{n_{i}}(u_{i}) : \|C(u_{k}) - n_{k}\| \le r_{c} \text{ if } \Gamma_{n_{k}}(u_{k}) \le \Gamma_{n_{i}}(u_{i}), \\ k = 1, \dots, K, \ i = 1, \dots, K \}$$
(16)

 $(\hat{h}_{\rm e}(q,r_{\rm c})=0)$ if the set defined in (16) is empty.)

¶ Rough explanation:

 $\hat{h}_{\rm e}(q,r_{\rm c})$ is the greatest "uncertainty horizon" within which the learning data are all classified with error no greater than $r_{\rm c}$.

¶ More precisely,

 $\hat{h}_{\rm e}(q,r_{\rm c})$ is the value of the greatest measured gap function, $\Gamma_{n_i}(u_i)$, for which all measured vectors u_k (including u_i) whose corresponding gap functions are no greater than $\Gamma_{n_i}(u_i)$, are classified with error no larger than $r_{\rm c}$.

¶ Further explanation. The condition:

$$\Gamma_{n_k}(u_k) \le \Gamma_{n_i}(u_i) \tag{17}$$

is equivalent to:

$$u_k \in \mathcal{U}_{n_k}(\Gamma_{n_i}(u_i), \widetilde{u}_{n_k}) \tag{18}$$

Thus all measurements in the learning set which satisfy:

$$u_k \in \mathcal{U}_{n_k}(\widehat{h}_{e}(q, r_c), \widetilde{u}_{n_k}) \tag{19}$$

are classified by C(u) with error no greater than r_c .

There may be some other data points that are classified with greater error.

¶ The error-free ($r_c = 0$) empirical robustness function is:

$$\widehat{h}_{e}(q,0) = \max \left\{ \Gamma_{n_{i}}(u_{i}) : \quad \text{if } \Gamma_{n_{k}}(u_{k}) \leq \Gamma_{n_{i}}(u_{i}), \right.$$

$$\text{then } C(u_{k}) = n_{k} \text{ for all}$$

$$k = 1, \dots, K, \ i = 1, \dots, K \right\} \tag{20}$$

 \P In particular, for the robust-optimal classifier in eq.(10) on p. 14, the error-free empirical robustness function is:

$$\widehat{h}_{e}(q,0) = \max \left\{ \Gamma_{n_{i}}(u_{i}) : \quad \text{if } \Gamma_{n_{k}}(u_{k}) \leq \Gamma_{n_{i}}(u_{i}), \right.$$

$$\text{then } \Gamma_{n_{k}}(u_{k}) < \Gamma_{n_{j}}(u_{k}) \text{ for all}$$

$$j \neq k, \ k = 1, \dots, K, \ i = 1, \dots, K \right\}$$

$$(21)$$

¶ An empirical robustness function can take any non-negative value.

$\P \, \widehat{h}_{\rm e}(q,0)$ can be **small:**

- If the data are very unusual,
 or if the info-gap models are very unrealistic.
 Then few or none of the learning data will be correctly classified.
- $\P \widehat{h}_{e}(q,0)$ can be **small** for an utterly opposite reason:
 - If the data are highly compatible with the info-gap models then a low *h* will be sufficient to "catch" the data.
- $\P \widehat{h}_{e}(q,0)$ can be **large:**
 - If the info-gap models poorly reflect ambient uncertainty then they must be greatly distended in order to "catch" the learning data.
- $\P \widehat{h}_{e}(q,0)$ can be **large** for an utterly opposite reason:
 - o If the info-gap models well reflect ambient uncertainty then C(u) will "catch" even extreme data at large h.

- ¶ In our earlier study of the "regular" robustness function $\hat{h}(q, r_c)$ we learned that "bigger is better".
- ¶ However, with the empirical robustness function $\widehat{h}_{\rm e}(q,r_{\rm c})$ it is not necessarily true that "bigger is better" when $\widehat{h}_{\rm e}(q,r_{\rm c})$ is used to up-date info-gap models. We must know why $\widehat{h}_{\rm e}(q,r_{\rm c})$ is large.
- \P A large value of $\widehat{h}_{\rm e}(q,r_{\rm c})$ may be either good or bad. We will still vary the decision vector q to modify $\widehat{h}_{\rm e}(q,r_{\rm c})$. However, a combined increase-and-decrease strategy must be employed.
- ¶ Special interpretation of robustness function is needed when up-dating an info-gap model.Why?Why is this so different from all other decision problems?

¶ Explanation:

- All decisions with uncertainty (unlike deductions)
 involve judgments of pragmatic truth based on severe tests.
- A severe test depends upon an assessment of uncertainty. That is, a severe test employs an uncertainty model.
- Why? (re-iterate previous discussion of severe tests):
 - A proposition is (pragmatically) true to the extent that only highly uncertain evidence contradicts the proposition.
 - Thus one must be able to assess degrees of uncertainty.
 - For this one uses \hat{h} based on an info-gap model or a probability function in statistical decisions.
- When the proposition being tested is:

"This uncertainty model is false."

The severe test collapses: one has no uncertainty model to use.

2.6 Plantar Pressures in Metatarsal Pathology

- ¶ Plantar pressures vary:
 - o During gait.
 - o Across the sole of the foot.
 - o Between individuals.
 - o Between activities.
 - o Due to pathology.
- ¶ We will up-date an info-gap model for pathological plantar pressure distribution.
- ¶ Common orthopedic pathology: hallux valgus.
 - o Enlarged angle between 1st metatarsus and 1st phalanx.
 - o Can produce excessive pressure on 1st metatarsal-phalangeal joint.
 - o Surgical correction needed in extreme cases.
- ¶ We will consider two info-gap models:
 - ∘ Normal plantar pressures: $U_1(h, \widetilde{u}_1)$, $h \ge 0$.
 - ∘ Pathological plantar pressures: $U_2(h, \tilde{u}_2)$, $h \ge 0$.
- ¶ We will consider only the pressures under 1st and 5th metatarsal-phalangeal joint.
- ¶ In the normal condition 1st and 5th plantar pressures are:
 - o roughly equal.
 - o display wide fluctuations between:
 - people.
 - activities.
- ¶ In the pathological condition 1st and 5th plantar pressures are:
 - o quite different.
 - o display wide fluctuations between:
 - people.
 - activities.

¶ $u = (u_1, u_2)^T$ = vector of uncertain plantar pressures.

¶ Info-gap models:

$$\mathcal{U}_1(h, \widetilde{u}_1) = \left\{ u = \widetilde{u}_1 + \phi : \phi^T \phi \le h^2 \right\}, \quad h \ge 0$$
 (22)

$$\mathcal{U}_2(h, \widetilde{u}_2) = \left\{ u = \widetilde{u}_2 + \phi : \phi^T W \phi \le h^2 \right\}, \quad h \ge 0$$
 (23)

W is a positive definite diagonal matrix: $W = diag(w_1, w_2)$.

¶ Nominal pressures in the two states, relative to average body weight:

$$\widetilde{u}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \widetilde{u}_2 = \begin{pmatrix} 1.3 \\ 0.8 \end{pmatrix}$$
 (24)

¶ Gap function for measurement u, defined in eq.(9) on p. 13: Least h for which the info-gap model is consistent with the measurement.

Gap function $\Gamma_1(u)$ for healthy-state:

$$\Gamma_1(u) = \sqrt{(u - \widetilde{u}_1)^T (u - \widetilde{u}_1)}$$
(25)

Gap function $\Gamma_2(u)$ for the pathological state:

$$\Gamma_2(u) = \sqrt{(u - \widetilde{u}_2)^T W(u - \widetilde{u}_2)}$$
(26)

- \P Given learning data, we use these gap functions to:
 - \circ Evaluate the empirical robustness of the robust-optimal classifier.
 - \circ Up-date the pathological info-gap model.

- ¶ Learning data:
 - o K pathological pressure vectors, u_1, \ldots, u_K .
 - \circ K = 6: Open circles in fig. 4.
 - o Bullets are nominal vectors.

Figure 4: Nominal measurements (\bullet) \widetilde{u}_1 and \widetilde{u}_2 , and learning data (\circ) u_1, \ldots, u_K .

¶ Empirical error-free empirical robustness eq.(21) on p. 21, of the robust-optimal classifier: Empirical estimate of the maximum h up to which pathology is not mis-classified:

$$\widehat{h}_{e}(q,0) = \max \{ \Gamma_{2}(u_{k}) : \Gamma_{2}(u_{k}) < \Gamma_{1}(u_{k}), \quad k = 1, \dots, K \}$$
 (27)

If this set is empty then $\hat{h}_{e}(q,0) = 0$.

¶ Parameters to up-date: diagonal shape matrix, so $q = (w_1, w_2)$.

Goal: Up-date $U_2(h, \widetilde{u}_2)$ by varying **shape** of ellipse.

Area of ellipse: $\pi/\sqrt{w_1w_2}$.

Thus: vary w_1 and adjust w_2 according to $w_2 = 1/w_1$.

¶ Calculated \hat{h}_e vs. shape parameter w_1 : fig. 5.

Figure 5: Empirical robustness function $\hat{h}_e(w_1, 0)$ vs. shape parameter w_1 .

- ¶ Discussion of fig. 5:
 - Only Γ_2 (pathological) varies with w_1 .
 - \circ From *a* to *b*:
 - Only 3 points correctly classified.
 - $\widehat{\it h}_e$ decreasing: ${\cal U}_2$ improving: becoming better adapted to data.
 - ∘ Discontinuous jump from *b* to *c*:
 - Additional datum correctly classified.
 - Gap function better, even though \hat{h}_e is now larger.
 - \circ From *c* to *d*:
 - Info-gap model improving:
 - Info-gap model adjusting to the 4 captured points.
 - Discontinuous slope at *d*:
 - Different captured point is now critical.
 - \circ From d to e:
 - Info-gap model deteriorating.

¶ Optimal shape matrix:

- \circ Local minimum of \hat{h}_{e} .
- \circ Global minimum of \hat{h}_e **not** optimum.
- Optimum: $w_1 = 0.38$ and $w_2 = 1/w_1 = 2.61$.
- \circ Semi-axis ratio: $\sqrt{w_2/w_1} = 2.62$.
- o Horizonal axis is long axis of the ellipse.

¶ Summary. Info-gap model optimized by:

- \circ Locally minimizing \hat{h}_{e} .
- \circ Identifying reason for minimum.
- o Different from "bigger is better" for "regular" \hat{h} .

3 Acoustic Noise

- ¶ Not all decisions are classifications, and not all learning is supervision of a classifier.
- ¶ Problem: Noise suppression in acoustic cavity.
 - Variable and uncertain noise sources.
 - Measure sound pressure at *M* points.
 - Impose acoustic signal from actuators.
 - Good performance if total residual sound energy is small.
- ¶ Info-gap model of acoustic source.

```
f(x) = unknown actual acoustic pressure at position x in cavity.
```

 $\widetilde{f}(x)$ = known estimated acoustic pressure at position x in cavity.

 $\mathcal{U}(h, \widetilde{f}) = \text{info-gap model for uncertainty in } f(x).$

 $\mathcal{U}(h, \widetilde{f})$ underlies choice of imposed acoustic signal.

¶ Learning:

- Given measured acoustic pressures u_1, \ldots, u_M at positions x_1, \ldots, x_M .
- ullet Do these measurements provide evidence against the info-gap model $\mathcal{U}(h,\widetilde{f})$?
- If the info-gap model is indicted, how do we improve it?
- $q = \text{vector of parameters or properties of the info-gap model which can be modified to improve <math>\mathcal{U}(h, \widetilde{f})$, if necessary.

3.1 Empirical Robustness

 \P Gap function: compatibility of datum u_m with info-gap model $\mathcal{U}(h,\widetilde{f})$:

$$\Gamma(u_m) = \min \left\{ h : f(x_m) = u_m \text{ for some } f(x) \in \mathcal{U}(h, \widetilde{f}) \right\}$$
 (28)

- ¶ Empirical robustness function.
 - "Reasonable" measurement: not extraordinary or unusual.
 - $\mathcal{U}(h, \widetilde{f})$ compatible with data if gap functions of reasonable measurements are not large.
 - Empirical robustness function:

$$\widehat{h}_{e}(q, r_{c}) = \max \left\{ \Gamma(u_{m}) : |u_{n}| \leq r_{c} \text{ if } \Gamma(u_{n}) \leq \Gamma(u_{m}), \\ m = 1, \dots, M, \quad n = 1, \dots, M \right\}$$
(29)

- Explanation:
 - $|u_n| \le r_c$ means u_n is not extraordinary measurement.
 - $\circ \Gamma(u_n) \leq \Gamma(u_m)$ means u_n at least as compatible with $\mathcal{U}(h, \widetilde{f})$ as u_m .
- \circ Thus $\hat{h}_{\rm e}(q,r_{\rm c})$ is the greatest horizon of uncertainty at which measurements are not extraordinary.
- $\hat{h}_{\rm e}(q,r_{\rm c})$ assesses fidelity of $\mathcal{U}(h,\widetilde{f})$ to the measurements, and is the basis for updating the info-gap model.

- \P $\hat{h}_{e}(q, r_{c})$ can be large for either of two opposite reasons:
- $\mathcal{U}(h, \widetilde{f})$ is a true and accurate characterization of the acoustic uncertainty, and is highly compatible with all the data, even extreme measurements.
- $\mathcal{U}(h,\widetilde{f})$ is so erroneous that extremely large gap-function values are needed to capture even a few data points.
- ¶ Up-dating $\mathcal{U}(h, \widetilde{f})$:
 - $\hat{h}_{e}(q, r_{c})$ depends on info-gap model parameters q.
 - We must understand why $\hat{h}_{e}(q, r_{c})$ is changing as we modify q.

3.2 Up-Dating the Acoustic Uncertainty Model

- ¶ 1-dimensional acoustic cavity: $0 \le x \le 1$.
- ¶ Acoustic pressure field, f(x).
 - f(x) is complex, and changing with circumstances.
 - Roughly constant, or biased predominantly to left or right.
 - Envelope-bound info-gap model:

$$U(h,0) = \{ f(x) : |f(x)| \le h\psi(x) \}, \quad h \ge 0$$
(30)

• Linear envelope functions:

$$\psi(x) = q\left(x - \frac{1}{2}\right) + 1\tag{31}$$

- \circ All these functions cross (0.5, 1).
- \circ Slope determined by q which must be in [-2, 2] to assure non-negativity.

Figure 6: Empirical robustness function $\hat{h}_{e}(q, 2.5)$ vs. slope parameter q.

Figure 7: Six pressure measurements (\circ) and the updated envelope function $\psi(x)$ with q = 1.63.

¶ Measured pressures at x = 0.05 and x = 0.95.

x = 0.05: 0.07, 0.21, 0.33. x = 0.95: 1.83, 1.97, 2.15.

- ¶ Empirical robustness function in fig. 6. r_c = 2.5. All data captured.
 - Left branch, *a* to *b*:
 - robustness decreasing as *q* rises from 0 to 1.63.
 - o Info-gap model improving as it becomes more consistent with measurements.
 - Right branch, *b* to *c*:
 - robustness increasing as *q* rises above 1.63.
 - o Info-gap model degenerating as it becomes less consistent with measurements.
 - Saw-tooth for larger *q* values as data points are "lost".
 - q = 1.63 is robust-satisficing value of envelope slope.
- \bullet Essentially same results with any $r_{\rm c}$ large enough to capture at least one value on both sides of cavity.
- ¶ Optimal slope, fig. 7.
 - Positive slope due to predominantly right-side pressure field.
 - Clearly not least-squares best-fit.
 - No presumption of linear pressure field.