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1 Introduction

¶We have considered 3 decision paradigms in this course:

• Optimizing:

q? = arg max
q

R(q, ũ) (1)

• Robust satisficing:

qrs = arg max
q

ĥ(q, Rc) (2)

• Opportune windfalling:

qow = arg min
q

β̂(q, Rw) (3)

¶ Do we observe satisficing in practice?

• Yes.

•Why?

¶We will consider info-gap robust-satisficing explanations of classical paradoxes of behavior

under uncertainty:

• Ellsberg (section 2).

• Allais (section 3).

¶We will study an info-gap robust-satisficing approach to expected-utility risk aversion (sec-

tion 4).

¶We will study an info-gap robust-satisficing approach to foraging by animals in section 5.

¶ We will show why info-gap robust-satisficing is a better bet than direct optimization in a

wide class of situations (section 6).
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2 The Ellsberg Paradox

¶ References:

• Yakov Ben-Haim, 2001, 2nd edition, 2006, Info-Gap Decision Theory: Decisions Under Severe

Uncertainty, Academic Press. Section 11.1.

• Mas-Colell, A., M.D. Whinston and J.R. Green, 1995, Microeconomic Theory, Oxford Uni-

versity Press, p.207.

• Ellsberg, D., 1961, Risk, ambiguity and the Savage axioms, Quarterly Journal of Eco-

nomics, 75: 643–669.

¶ Ellsberg’s urn experiment:

• R contains 49 white and 51 black balls, well mixed. (Probabilistic uncertainty)

• H contains 100 white and black balls. (Non-probabilistic ambiguity)

• First experiment: choose one ball and win $1000 if it is black.

Students: from which urn would you choose the ball?

• Second experiment: choose one ball and win $1000 if it is white.

Students: from which urn would you choose the ball?

¶ Ellsberg’s observations:

• 1st experiment: most agents choose R-ball.

• 2nd experiment: most agents choose R-ball again.

¶ Ellsberg’s paradox:

• R-urn probabilities of W and B: 0.49 and 0.51.

• H-urn probabilities of W and B: π and 1− π.

• 1st experiment implies 1− π < 0.51 hence π > 0.49.

• Hence agent should choose H-ball in 2nd experiment. Most don’t.
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2.1 Info-Gap Analysis of 1st Experiment

¶ Can we understand Ellsberg’s paradox using info-gap robustness?

¶ In the 1st experiment the agent must choose between the following two lotteries:

$1000 $0
(black) (white)

(Choose R-ball) L1 : p̃1 = (0.51 , 0.49)

(Choose H-ball) L′1 : p̃ ′1 = (1− π , π)

(4)

¶ Uncertainty:

• Agent does not perform precise probability calculations.

• Subjective perception of probabilities is unclear. E.g.:

◦What is precise meaning of 0.02 probability difference between p̃11 and p̃12?

◦What is precise meaning of π?

• Info-gap models:

L(h, p̃1) =

{
p1 ∈ P2 :

∣∣∣∣ p11 − p̃11
p̃11

∣∣∣∣ ≤ h
}

, h ≥ 0 (5)

L′(h, p̃ ′1) =

{
p1 ∈ P2 :

∣∣∣∣∣ p11 − p̃ ′11

p̃ ′11

∣∣∣∣∣ ≤ ηh

}
, h ≥ 0 (6)

η > 1 implies that L′(h, p̃ ′1) is an expanded and shifted version of L(h, p̃1).

¶ Known utility of winning $1000 is u > 0. Utility of winning $0 is 0.

¶ Decision variable:

q =

{
1 for choosing L1

−1 for choosing L′1
(7)

¶ Robustness function for satisficing expected utility:

ĥ(q, rc) = max
{

h :

(
1
2
|1 + q| min

p∈L(h,p̃1)
up11 +

1
2
|1− q| min

p∈L′(h,p̃′1)
up11

)
︸ ︷︷ ︸

R∗[q,L(h,p̃1),L′(h,p̃′1)]

≥ rc

}
(8)
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¶ Evaluating robustness.

• µ1(h) and µ′1(h) denote the first and second inner minima in eq.(8).

• µ1(h) and µ′1(h) decrease monotonically as h increases.

•When q = 1, robustness is max h at which µ1(h) = rc.

That is, µ1(h) is the inverse of ĥ(1, rc):

µ1(h) = rc if and only if ĥ(1, rc) = h (9)

Plot of µ1(h) vs. h is the same as a plot of rc vs. ĥ(1, rc).

•When q = −1, a plot of µ′1(h) vs. h is the same as a plot of rc vs. ĥ(−1, rc):

µ′1(h) = rc if and only if ĥ(−1, rc) = h (10)

• One readily finds the following expressions for these µ-functions:

µ1(h) = max[0, (1− h)up̃11] (11)

µ′1(h) = max[0, (1− ηh)up̃ ′11] (12)

-

6

Robustness
ĥ(q, rc)

Critical utility, rc

q = −1

q = 11

0

1
η

up̃11up̃ ′11

Figure 1: Robustness
curves for the first pair of
lotteries, eq.(4).

¶ Robust-satisficing choice in 1st experiment.

• Robustness curves based on eqs.(9)–(12) are shown in fig. 1.

• Robustness of q = 1 is greater than the robustness of lottery L′1 for any attainable rc.

• Because:

◦ p̃11 = 0.51 > p̃ ′11 = 1− π (recall that π evidently exceeds 0.49).

◦ η > 1.

• The robust-satisficing agent will choose lottery L1 over L′1.

• The utility-optimizing agent will choose lottery L1 over L′1.

• They agree on the action, but for different reasons.
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2.2 Info-Gap Analysis of 2nd Experiment

¶ In the 2nd experiment the agent must choose between the following two lotteries:

$1000 $0
(white) (black)

(Choose R-ball) L2 : p̃2 = (0.49 , 0.51)

(Choose H-ball) L′2 : p̃ ′2 = (π , 1− π)

(13)

From 1st experiment it would seem that π > 0.49.

¶ Uncertainties:

• Perceived probabilities are again uncertain.

• Info-gap models L(h, p̃2) and L′(h, p̃ ′2) in eqs.(5) and (6) on p.4.

• New center points p̃2 and p̃ ′2.

• η > 1 implies that L′(h, p̃ ′2) is an expanded and shifted version of L(h, p̃2).

¶ µ-functions for robustness:

µ2(h) = max[0, (1− h)up̃21] (14)

µ′2(h) = max[0, (1− ηh)up̃ ′21] (15)
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Figure 2: Robustness
curves for the first pair of
lotteries, eq.(4).

Figure 3: Robustness
curves for the second pair
of lotteries, eq.(13).

¶ Robust-satisficing choice in 2nd experiment:

• Robustness curves for lotteries L2 and L′2 in fig. 3 on p.7.

• These robustness curves cross because:

◦ η > 1 as before.

◦ p̃ ′21 = π > p̃21 = 0.49.

•However, the difference between p̃ ′21 and p̃21 is likely to be small so the intersection occurs

at very low robustness, especially if η is very large.

• Most decision makers may be expected to require robustness to uncertainty in excess of

the robustness at which the curves cross, so the robust-satisficing agent will again tend to

choose lottery L2 over L′2. This is what is usually observed.

• The utility-optimizing agent will choose L′2 over L2.

¶ Summary:

• EU-maximization predicts: choose L2 in 1st experiment, L′2 in 2nd experiment.

• Robust-satisficing predicts: choose L2 in both experiments.

•Most decision makers behave according to the robust-satisficing model.
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3 The Allais Paradox

¶ References:

• Yakov Ben-Haim, 2001, 2nd edition, 2006, Information-Gap Decision Theory: Decisions Under

Severe Uncertainty, Academic Press. Section 11.2.

• Mas-Colell, A., M.D. Whinston and J.R. Green, 1995, Microeconomic Theory, Oxford Uni-

versity Press, p.179.

3.1 Allais’ Experiment

¶ Lotteries:

• Lottery has 3 prizes with values V1 = $0, V2 = $0.5× 106 and V3 = $2.5× 106.

• Lottery is specified by L = (p1, p2, p3) where pn is the probability of winning Vn.

¶ DM is twice offered a choice between two lotteries.

• The first pair of lotteries between which the DM must choose is:

L1 = (0, 1, 0) and L′1 = (0.1, 0.89, 0.01) (16)

Students: which lottery do you prefer?

• The second pair of lotteries between which the agent chooses is:

L2 = (0, 0.11, 0.89) and L′2 = (0.1, 0, 0.9) (17)

Students: which lottery do you prefer?

¶ Allais’ observation.

• Usually, people who prefer L1 over L′1 also prefer L′2 over L2:

L1 � L′1 implies L′2 � L2 (18)

• This pair of choices is not universal.

• For some people: L1 � L′1 and L2 � L′2:

L1 � L′1 implies L2 � L′2 (19)

• Other combinations of preferences are also observed.
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¶ The paradox.

• u = (u1, u2, u3) = utility vector for prizes V1, V2, V3.

• Expected utility of a lottery:

EU(L) =
3

∑
i=1

ui pi = uT L (20)

• Note that:

L2 = L1 + φ and L′2 = L′1 + φ (21)

where φ = (0,−0.89, 0.89).

• Hence:

EU(L1) > EU(L′1) ⇐⇒ uT L1 > uT L′1 (22)

⇐⇒ uT L1 + uTφ > uT L′1 + uTφ (23)

⇐⇒ uT L2 > uT L′2 (24)

⇐⇒ EU(L2) > EU(L′2) (25)

• Hence L1 � L′1 entails L2 � L′2 if the preferences maximize expected utility.

• Thus, L1 � L′1 with L′2 � L2, violates additivity axiom of expected-utility theory.

• Does that mean that L1 � L′1 with L′2 � L2 is irrational???

¶ A decision theory must account for:

• Diversity of response to Allais’ experiment.

• Common violation of additivity axiom of expected-utility theory.

¶We will see that robust-satisficing behavior does this by considering two situations:

• Uncertain perceived probabilities of the lotteries leads to preference reversal, section 3.2.

• Uncertain utilities leads to expected-utility maximization, section 3.3.



\risk\lectures\rsb02.tex ROBUST-SATISFICING BEHAVIOR 10

3.2 Probability Uncertainty

¶ The DM is uncertain only about subjective meaning of the probabilities.

¶ 1st pair of lotteries, eq.(16) on p.8:

• L1 is perceived more clearly and with less uncertainty than L′1.

• Fractional-error info-gap model, like eqs.(5) and (6), is:

L1(h, p̃1) =

{
p1 ∈ P3 :

∣∣∣∣ p1i − p̃1i
p̃1i

∣∣∣∣ ≤ h, i = 2, 3
}

, h ≥ 0 (26)

L′1(h, p̃ ′1) =

{
p1 ∈ P3 :

∣∣∣∣∣ p1i − p̃ ′1i
p̃ ′1i

∣∣∣∣∣ ≤ ηh, i = 2, 3

}
, h ≥ 0 (27)

η > 1 implies that L′1(h, p̃ ′1) is an expanded and shifted version of L1(h, p̃1).

¶ 2nd pair of lotteries, eq.(17), p.8:

• L2 is more intricate and confusing that L′2.

• The info-gap models are:

L2(h, p̃2) =

{
p2 ∈ P3 :

∣∣∣∣ p2i − p̃2i
p̃2i

∣∣∣∣ ≤ ηh, i = 2, 3
}

, h ≥ 0 (28)

L′2(h, p̃ ′2) =

{
p2 ∈ P3 :

∣∣∣∣∣ p2i − p̃ ′2i
p̃ ′2i

∣∣∣∣∣ ≤ h, i = 2, 3

}
, h ≥ 0 (29)

η > 1 so now L2(h, p̃2) is an expanded and shifted version of L′2(h, p̃ ′2).

¶ Decision variable for choosing between lotteries Ln and L′n is q:

q =

{
1 for choosing Ln

−1 for choosing L′n
(30)

¶ ũ = known personal utility vector.

¶ Robustness function:

ĥn(q, rc) = max
{

h :
(

1
2
|1 + q| min

p∈Ln(h,p̃n)
ũT p +

1
2
|1− q| min

p∈L′n(h,p̃′n)
ũT p

)
︸ ︷︷ ︸

R∗[q,Ln(h,p̃n),L′n(h,p̃′n)]

≥ rc

}
(31)
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¶ Evaluating the robustness.

• µn(h) and µ′n(h) denote the first and second inner minima in eq.(31).

• As explained in eqs.(9) and (10), µn(h) is the inverse of ĥn(1, rc) while µ′n(h) is the inverse

of ĥn(−1, rc).

• Utilities of zero, moderate, and high reward are ũ1, ũ2 and ũ3. Assume: ũ2 and ũ3 are

positive and ũ1 = 0.

• The µ-functions for the first pair of lotteries, eq.(16), p.8, are obtained by choosing p12 and

p13 as small as possible at horizon of uncertainty h:

µ1(h) = max[0, (1− h)ũ2 p̃12] + max[0, (1− h)ũ3 p̃13] (32)

µ′1(h) = max[0, (1− ηh)ũ2 p̃ ′12] + max[0, (1− ηh)ũ3 p̃ ′13] (33)

• Similarly, the µ-functions for the second pair of lotteries, eq.(17), p.8, are:

µ2(h) = max[0, (1− ηh)ũ2 p̃22] + max[0, (1− ηh)ũ3 p̃23] (34)

µ′2(h) = max[0, (1− h)ũ2 p̃ ′22] + max[0, (1− h)ũ3 p̃ ′23] (35)

¶ Assume:

ũT p̃ ′1 < ũT p̃1 (36)

which implies that the expected-utility-maximizer would prefer L1 over L′1.
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ĥ2(q, rc)

Critical utility, rc
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(L2)

q = −1
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Figure 4: Robustness
curves for the first pair of
lotteries, eq.(16).

Figure 5: Robustness
curves for the second pair
of lotteries, eq.(17).

¶ 1st pair of lotteries, eq.(16):

• Robustness curves, based on eqs.(32) and (33), in fig. 4.

• Robust-satisficer and EU-maximizer agree: L1 � L′1, for different reasons.

• EU-maximizer: because of eq.(36) on p.11.

• Robust-satisficer: η > 1 so L1 more robust to uncertainty in the perceived probabilities

than L′1.

¶ 2nd pair of lotteries, eq.(17):

• Robustness curves, based on eqs.(34) and (35), in fig. 5.

• Eqs.(21) and (36) imply:

ũT p̃ ′2 < ũT p̃2 (37)

• EU-maximizer: L2 � L′2.

• Robust-satisficer would not necessarily agree.

• The robustness curves cross at utility-aspiration r× and at robustness ĥ×.

• r× is large and ĥ× is small:

◦ since anticipated expected utility, ũT p̃2 and ũT p̃ ′2, are nearly the same.

◦ and if η is substantially greater than unity.

• Thus L′2 is more robust than L2 for rc < r× and ĥ > ĥ×.

• The robust-satisficing agent will choose lottery L′2 unless:

◦ Very little robustness is needed or,

◦ Very great utility is required.
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¶ Summary:

• Robust-satisficer with probability-uncertainty displays preference-reversal like most of

Allais’ subjects.

• EU-maximizer with estimated probabilities inconsistent with most of Allais’ subjects.
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3.3 Utility Uncertainty

¶ Uncertainty.

• The DM is uncertain only about the utility vector.

• The subjective meaning of the probabilities is perfectly clear.

• Info-gap model of uncertainty in u:

U (h, ũ) =
{

u : (u− ũ)T W (u− ũ) ≤ h2
}

, h ≥ 0 (38)

W is a known, real, symmetric, positive definite matrix.

¶ Decision vector:

q, eq.(30), p.10, for choosing between lotteries Ln and L′n, specified in eqs.(16) and (17), p.8.

¶ Robustness:

ĥn(q, rc) = max
{

h :
(

min
u∈U (h,ũ)

uT [q ( p̃n − p̃ ′n
)])
≥ rc

}
(39)

p̃n and p̃ ′n are probability vectors of lotteries Ln and L′n respectively.

¶ Evaluating the robustness.

•Minimum in eq.(39) is:

min
u∈U (h,ũ)

uT [q ( p̃n − p̃ ′n
)]

= qũT ( p̃n − p̃ ′n
)
− h

√(
p̃n − p̃ ′n

)
W−1

(
p̃n − p̃ ′n

)︸ ︷︷ ︸
ξn

(40)

• Robustness in eq.(39) is the least upper bound of the set of h-values for which:

qũT ( p̃n − p̃ ′n
)
− hξn ≥ rc (41)

• Define ∆̃ = ũT ( p̃n − p̃ ′n
)
= anticipated utility-premium of lottery Ln over L′n.

• Robustness of choice q, with required utility-premium rc, is:

ĥ(q, rc) =


q∆̃− rc

ξn
if rc ≤ q∆̃

0 else
(42)

¶ Choices:

• Robust-satisficer: choose q so that q∆̃ > 0. That is:

Ln � L′n if and only if ũT p̃n ≥ ũT p̃ ′n (43)

• From eq.(22), p.9:

robust-satisficer will agree with expected-utility-maximizer in both lottery selections.
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¶ Summary of sections 3.2 and 3.3.

• A robust-satisficing DM whose uncertainty is limited to the perceived probabilities will

usually display the preference-reversal and axiom-violation displayed by some of Allais’ sub-

jects (section 3.2).

•A robust-satisficing DM with uncertainty only about the utilities of the prizes will behave

just like an expected-utility-maximizer (section 3.3).

• In short, the robust-satisficing decision paradigm, combined with diversity of the agents’

uncertainties, is consistent with Allais’ famous experiments.
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4 Info-Gap Analysis of Expected-Utility Risk Aversion

4.1 Expected-Utility Risk Aversion

¶We first introduce the classical probabilistic concept of risk aversion.

¶ Consider prizes of value

w1 > w2 > w3 (44)

where

w2 = Pw1 + (1− P)w3 (45)

and 0 < P < 1. These prizes can be won in either of the lotteries:

L : p̃ = (P, 0, 1− P)T (46)

L′ : p̃ ′ = (0, 1, 0)T (47)

P and 1− P are the probabilities of winning w1 and w3 respectively.

L is a gamble between high and low gain.

L′ is a sure bet on an outcome that is the mean of the extremes.

¶ Utility function:

• ũ(wi) = decision maker’s personal utility from prize wi.

• Define vector:

ũ = (ũ(w1), ũ(w2), ũ(w3)) (48)
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Figure 6: Concave es-
timated utility function.
Risk aversion.

Figure 7: Convex es-
timated utility function.
Risk proclivity.

¶ Expected utility of L and L′:

E(L) = Pũ(w1) + (1− P)ũ(w3) = ũT p̃ (mean of the utilities) (49)

E(L′) = ũ(w2) (50)

= ũ[Pw1 + (1− P)w3] = ũT p̃′ (utility of the means) (51)

¶ Expected-utility preference:

L � L′ if and only if Pũ(w1) + (1− P)ũ(w3) > ũ(w2) (52)

¶ Risk aversion:

• Prefer certainty-equivalent sure thing, w2, over gamble between w1 and w3.

• Prefer L′ over L.

• Fig. 6: Concave utility function.

• Degree of risk aversion: negative curvature of utility function.

¶ Risk proclivity:

• Prefer gamble between w1 and w3 over certainty-equivalent sure thing, w2.

• Prefer L over L′.

• Fig. 7: Convex utility function.

• Degree of risk proclivity: positive curvature of utility function.

¶ Expected-utility risk aversion:

• Depends on knowing utilities and probabilities.

• Not usually suited for deep uncertainty.

¶We will study risk sensitivity from an info-gap perspective.
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4.2 Info-Gap Analysis with Uncertain Probabilities

¶ Uncertainty in subjective probabilities:

• p̃ in L, eq.(46), p.16: more complicated, less clear.

• p̃ ′ in L′, eq.(47), p.16: less complicated, more clear.

• Fractional-error info-gap models:

◦ L(h, p̃) in eq.(28), p.10, for p̃.

◦ L′(h, p̃ ′) in eq.(29), p.10, for p̃ ′.

L(h, p̃) =

{
p ∈ P3 :

∣∣∣∣ pi − p̃i
p̃i

∣∣∣∣ ≤ ηh, i = 1, 2
}

, h ≥ 0 (53)

L′(h, p̃ ′) =

{
p ∈ P3 :

∣∣∣∣∣ pi − p̃ ′i
p̃ ′i

∣∣∣∣∣ ≤ h, i = 1, 2

}
, h ≥ 0 (54)

η > 1 so L(h, p̃) is an expanded and shifted version of L′(h, p̃ ′).

¶ DM’s goal:

• Robust-satisfice expected utility, ũT p.

• ũ is known; probability distribution p is uncertain.

• Decision variable:

q =

{
1 for choosing L

−1 for choosing L′
(55)

• Robustness of choice q between lotteries L and L′, with critical utility rc, eq.(31), p.10:

ĥ(q, rc) = max
{

h :
(

1 + q
2

min
p∈L(h,p̃)

ũT p +
1− q

2
min

p∈L′(h,p̃′)
ũT p

)
≥ rc

}
(56)
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¶ Decisions:

• Suppose ũT p̃ > ũT p̃ ′.

• Thus eq.(52), p.17, holds and utility-maximizing agent prefers:

(risky) L � L′ (risk free) (57)

as in fig. 7 on p.17.

• However, robustness curves cross at utility-aspiration r× and robustness ĥ×, as in fig. 8.

-

6

Robustness
ĥ(q, rc)

Critical utility, rc

q = 1
(L)

q = −1
(L′)

(r×, ĥ×)
�
�	

1

0

1
η

ũT p̃ũT p̃ ′

Figure 8: Robustness curves.

• If:

ũT p̃ is not too different from ũT p̃ ′,

and if:

η is substantially greater than one,

then r× is large and ĥ× is small,

So robust-satisficer prefers:

(risk-free) L′ � L (risky) (58)

in contrast to utility-maximizer with the same utility function.

¶ Risk aversion is expressed by:

• Demand for utility, as manifested in curvature of utility function (classical).

• Demand for robustness, as manifested in robustness function (info-gap).
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5 Info-Gap Robust-Satisficing Foraging

¶ Is robustness a good (probabilistic) bet? What can we learn from animal behavior?

Figure 9: Squirrels eat acorns.

¶ Joint work with Prof. Yohay Carmel.1

HERE - THERETo move?

¶ Foraging decision:

• Animal currently feeding “here”.

• To move or not to move? That is the question.

§ Optimization model: Maximize energy intake.

§ Robust-satisficing model:

• Satisfice energy intake.

•Maximize robustness to uncertainty.

¶ Variables:

G0 = energy gain here (highly uncertain).

G1 = energy gain there (highly uncertain).

G̃0 = estimate of G0.

G̃1 = estimate of G1.

C = cost of moving.

1Yohay Carmel and Yakov Ben-Haim, 2005, Info-gap robust-satisficing model of foraging behavior: Do for-
agers optimize or satisfice?, American Naturalist, 166: 633–641.
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T = remaining time.

¶ System model:

• Define decision variable:

q =

{
−1 moving

1 staying
(59)

• Energy intake:

E(G, q) =
1 + q

2
G0T +

1− q
2

(G1T − C) (60)

¶ Performance requirement:

E(G, q) ≥ Ec (61)

¶ Fractional error info-gap model:

U (h) =
{

G0, G1 :

∣∣∣∣∣Gi − G̃i

G̃i

∣∣∣∣∣ ≤ h, i = 0, 1

}
, h ≥ 0 (62)

¶ Optimal foraging:

•Maximize best estimate of energy.

• Leave patch when:

G̃0T < G̃1T − C (63)

¶ Robust satisficing:

• Emin = least acceptable energy.

• Reliably achieve Emin.

¶ Robustness definition and derivation:

ĥ(Ec, q) = max
{

h :
(

min
G∈U (h)

E(G, q)
)
≥ Ec

}
(64)

• m(h) denotes inner minimum, occurring at minimal energy gains:

m(h) =
1 + q

2
(1− h)G̃0T +

1− q
2

[(1− h)G̃1T − C] (65)

= E(G̃, q)−
(

1 + q
2

G̃0T +
1− q

2
G̃1T

)
h (66)

• Equate m(h) to Ec and solve for h to obtain robustness:

ĥ(Ec, q) =
E(G̃)− Ec

1+q
2 G̃0T + 1−q

2 G̃1T
(67)

or zero if this is negative. Specifically:

ĥ(Ec, q = 1) = 1− Ec

G̃0T
(68)
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ĥ(Ec, q = −1) = 1− Ec + C
G̃1T

(69)

§ Two cases:

• Nominally optimal to stay: G̃1T − C < G̃0T.

• Nominally optimal to move: G̃1T − C > G̃0T.
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-
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Robustness
1

1− C
G̃1T

00 E(G̃, 1)E(G̃,−1)
Critical gain, Ec

-

6

Stay

Move

Emin

∆ĥ(Emin)

Robustness
1
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G̃1T

00
Critical gain, Ec

E(G̃,−1)E(G̃, 1)

Figure 10: Nominally stay: G̃1T − C < G̃0T. Figure 11: Nominally move: G̃1T − C > G̃0T.

§ Fig. 10:

• Nominally optimal to stay: G̃1T − C < G̃0T.

• Robust satisficer also stays.

§ Fig. 11:

• Nominally optimal to move: G̃1T − C > G̃0T.

• Robust satisficer may or may not move.

¶ Preliminary lit. survey of 34 studies

suggests support for robust-satisficing in many taxa.

¶Why optimize?

More is better than less.

Hence most is best.

¶Why not optimize?

(Even though most is best.)

¶ Bounded rationality (Simon):

• Poor information.

• Poor information processing.

• Optimization unreliable, infeasible.

¶ Robust-satisficing is proxy for Probability of success:

max Robustness =⇒ max Prob of Success

=⇒ max Prob of Survival
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¶ Darwin and satisficing:

• Evolution:

◦ Survival of more fit over less fit (O of S).

◦ Don’t optimize. Satisfice:

— Beat competition.

— Robustify against surprises.

¶ Darwin and satisficing:

• Species distribution:

◦ “Great fact” (O of S):

Similar habitats in old & new worlds have

“widely different . . . living productions!”.

◦ Optimization:

Similar phenotypes under similar constraints.

◦ Robust satisficing:

Diversity from performance-sub-optimality.

¶ Foraging animals seem to robust-satisfice.

¶ Questions:

• Is this mental frailty of animals or evolutionary guile?

• It seems that satisficing is strategically advantageous.
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6 Probability of Success

2

¶Main idea:

• Robust-satisficing is sometimes a better bet than direct optimization.

• In this section we will discuss a theorem which indicates why this is true.

¶ Animals seem to robust-satisfice rather than to optimize. Thus robust-satisficing seems to

be an evolutionarily successful strategy. We consider several examples.

• Invasive species:

◦ Darwin:

— Invasive species introduced to a new region can dominate successful endemic

species due to the newcomers’ superior fitness.

— The successful endemics did not optimize. They just beat the local competition.

◦ Simon: evolutionary success is by comparative advantage not universal optimality.

‘Comparative advantage’ is a satisficing strategy (don’t optimize, just beat the competition),

◦ Darwinian evolution is the survival of the more fit over the less fit, not necessarily of

the most fit.

• Old and new world habitats:

◦ Darwin: similar habitats in the Old and New Worlds have “widely different . . . living

productions!”.

◦ Optimization would tend to produce similar phenotypes under similar constraints.

◦ Robust satisficing produces diversity due to the added degrees of freedom associated

with performance-sub-optimality.

• Foraging by animals from numerous diverse taxa:

sub-optimal but robust strategies preferred over performance-optimal decisions.

• Economic puzzles,

◦ Home-bias paradox,

◦ Equity premium puzzle,

suggest that economic agents robust-satisfice rather than optimize.

¶ Engineering design: satisfy specifications; don’t optimize performance.

2Significant overlap between this section and sections 2.3–2.6 in Lecture Notes on Optimizer’s Curve,
optimizers-curse04.tex.



\risk\lectures\rsb02.tex ROBUST-SATISFICING BEHAVIOR 26

6.1 A Simple Choice

¶ The choice:

• Choose 1 from among I options or alternatives.

• vi = value from option i.

• Large value better than small value.

• At least value vc needed for survival.

¶ Uncertainty:

ṽi = best-estimate of value of option i

σi = estimated error of ṽi.

• Info-gap model:

U (h, ṽi) = {vi : |vi − ṽi| ≤ hσi} , h ≥ 0 (70)

¶ Question: What strategy?

• Direct optimization. Maximize best-estimate of value:

i? = arg max
i

ṽi (71)

Why is direct optimization attractive:

◦ i? has the best value if the estimates are correct.

◦ Even if the estimates err, hopefully option i? is still better than others.

• Robust-satisficing:

◦ Satisfice value.

◦Maximize robustness to uncertainty in value.

• Robustness:

ĥ(i, vc) = max
{

h :
(

min
vi∈U (h,ṽi)

vi

)
≥ vc

}
(72)

• Robust-satisficing option:

î(vc) = arg max
i

ĥ(i, vc) (73)

Why is robust-satisficing attractive: Maximize reliability of survival.



\risk\lectures\rsb02.tex ROBUST-SATISFICING BEHAVIOR 27

-

6

ṽi

ṽi/σi

0
0
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Figure 12: Robustness curve,
eq.(74).

Figure 13: Comparison of
two options: reversal of pref-
erences.

¶ Robustness function, fig. 12:

ĥ(i, vc) =

{ ṽi − vc
σi

if ṽi ≥ vc

0 else
(74)

• Trade-off of ĥ vs. vc.

• No robustness of nominal best estimate:

ĥ(i, vc) = 0 if vc = ṽi (75)

¶ Two alternative options with parameters:

ṽi > ṽj and
ṽi

σi
<

ṽj

σj
(76)

• Robustness curves in fig. 13.

• Eq.(76) is basic dilemma of DM. Option i has:

◦ higher estimated value than option j,

◦ larger estimation-uncertainty than j.

• Eq.(76) are necessary and sufficient for the robustness curves to cross in the positive quad-

rant, as in fig. 13.

¶ Compare robust-satisficing and direct optimizing choice between any options i and j.

• Based on fig. 13.

• Robust-satisficing and direct-optimizing differ if and only if:

ṽi > ṽj and
ṽi

σi
<

ṽj

σj
and vc < v× (77)

• They agree otherwise.
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6.2 Probability of Survival: Standardization

¶Which strategy,

• Robust-satisficing, eq.(73), p.26, or,

• Direct optimizing, eq.(71), p.26,

will have greater probability of survival?

¶ Probability of survival.

• Option i succeeds if its value is no less than the critical value:

vi ≥ vc (78)

• Fi(·) denotes the cumulative probability distribution function of vi.

• Probability of success for option i is:

Ps(i) = Prob(vi ≥ vc) = 1− Fi(vc) (79)

¶ Standardization class of probability distributions.

• f (x|q) is a pdf of a random variable x, where q is a vector of parameters of the pdf.

• f (x|q) is a class of pdfs parametrized by q.

•Mean and variance of x are µx and σ2
x . E.g. q = (µx, σ2

x).

• Standardized random variable, with pdf g(y), is:

y = (x− µx)/σx (80)

• If g(y) is independent of q then this is a standardization class. That is, if all the standard-

ized random variables in the class have the same pdf, then this is a standardization class.

• Standardization classes are quite common:

◦ the normal, uniform, and exponential distributions all being examples.

◦ The standardized distribution g(y) may belong to the standardization class, e.g. nor-

mal and uniform, but this is not necessarily true, e.g. the exponential.
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¶ Example: exponential distribution:

f (x|q) = qe−qx, x ≥ 0 (81)

Moments:

E(x|q) = σ(x|q) = 1
q

(82)

Standardized variable:

y =
x− E(x|q)

σ(x|q) = qx− 1 (83)

Standardized density by probability balance:

x =
y + 1

q
, dx =

1
q

dy =⇒ g(y)dy = p(x)dx = e−qxqdx = e−(y+1)dy, y ≥ −1 (84)

Standardized density and cumulative distribution:

g(y) = e−(y+1), y ≥ −1, G(y) =
∫ y

−1
g(z)dz = 1− e−(y+1) (85)

g(y) is a shifted exponential distribution.

¶ Probability of survival.

• Suppose vi and vj both belong to the same standardization class.

• G(y) = cumulative probability distribution function of the standardized random vari-

ables.

• Probability of success for option i is:

Ps(i) = Prob(vi ≥ vc) = Prob
(

vi − ṽi

σi
≥ vc − ṽi

σi

)
(86)

= 1− G
(

vc − ṽi

σi

)
(87)

= 1− G
[
−ĥ(i, vc)

]
(88)

where eq.(88) results from eqs.(87) and (74) if vc ≤ ṽi.

•We see that:

Ps(i) > Ps(j) if and only if ĥ(i, vc) > ĥ(j, vc) (89)

• Theorem:

◦ If the values of the options all belong to the same standardization class,

◦ Then robust-satisficing is a better bet than direct-optimizating if eq.(77) hold.

◦ The strategies coincide otherwise and then have the same probability of success.

¶Note: We don’t need to know the identity of the standardization class in order to exploit the

proxy property.
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6.3 Proxy Theorem

6.3.1 Formulation

¶ Preference relations.

• Variables: r = decision, q = uncertainty, L(r, q) = loss function.

• Robustness function:

ĥ(r, Lc) = max
{

h :
(

max
q∈Q(h,q̃)

L(r, q)
)
≤ Lc

}
(90)

• Robust-satisficing preferences:

r �r r′ if ĥ(r, Lc) > ĥ(r′, Lc) (91)

• Probability of survival:

Ps(r, Lc) = Prob[L(r, q) ≤ Lc] =
∫

L(r,q)≤Lc

p(q)dq (92)

p(q) is unknown.

• Probabilistic preferences:

r �p r′ if Ps(r, Lc) > Ps(r′, Lc) (93)

¶ Critical question: when do the preferences in eqs.(91) and (93) agree?

¶Why is this important?

If a proxy theorem holds, then robust-satisficers will survive with greater likelihood than

direct optimizers.
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¶ General uncertain variable, u.

• u is a general uncertain variable or function, with info-gap model U (h, ũ).

Definition 1 A scalar loss function L(r, u) is reducible and separable if there is a scalar function

q(u), independent of r, such that L(r, u) can be expressed as L[r, q(u)].

• L(r, u) is reducible and separable if:

L(r, u) = ρ(r)q(u) or L(r, u) = ρ(r) + q(u) or ρ(r)q(u) or L(r, u) = q(u)ρ(r),

where ρ(r) is a scalar independent of u and q(u) is a scalar independent of r.

• L(r, u) = ρ(r)q1(u) + q2(u) is separable but not reducible if q1 and q2 are distinct func-

tions.

• U (h, ũ) induces an info-gap model for a function q(u):

Q[h, q(ũ)] = {q : q = q(u), u ∈ U (h, ũ)} , h ≥ 0 (94)

If U (h, ũ) and q(u) do not depend on the decision, r, then neither does Q[h, q(ũ)].

¶ Scalar uncertain variable, q.

• q is a scalar uncertain variable or function, with values in D and with info-gap model

Q(h, q̃). Define:

q?(h) = max
q∈Q(h,q̃)

q (95)

q?(h) = min
q∈Q(h,q̃)

q (96)

µ(h) = max
q∈Q(h,q̃)

L(r, q) (97)

Definition 2 An info-gap model, Q(h, q̃), expands upward continuously if, for any ε > 0, there

is a δ > 0 such that:

|q?(h′)− q?(h)| < ε if |h′ − h| < δ (98)

Continuous downward expansion is defined similarly with q?(·) instead of q?(·).

• Define the extremal values of the loss function L(r, q) for scalar q’s on D:

L0(r) = min
q∈D

L(r, q), L1(r) = max
q∈D

L(r, q) (99)
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¶ Proxy Theorem.

Theorem 1 Info-gap robustness is a proxy for probability of survival if the loss function is reducible

and separable.

Given:

• u is a general info-gap variable with info-gap model U (h, ũ).

• L(r, u) is a real-valued and scalar loss function which is reducible and separable and can be expressed

L[r, q(u)] where q(u) is a single-valued scalar variable with connected range D.

• At any decision r, the loss function, L(r, q), has extreme values L0(r) and L1(r), defined in eq.(99),

either or both of which may be infinite.

• Q(h, q̃) is the info-gap model defined in eq.(94), whose range contains the domain D.

• The info-gap model Q(h, q̃) does not depend on the decision, r.

• Q(h, q̃) is a continuously upward expanding, or continuously downward expanding, info-gap model

(or both).

Then, for any two decisions, r1 and r2, which each have positive robustness ĥ(ri, Lc) to uncertainty in

u, for Lc ∈ [L0(ri), L1(ri)], i = 1, 2:

ĥ(r1, Lc) ≥ ĥ(r2, Lc) implies Ps(r1, Lc) ≥ Ps(r2, Lc) (100)

and

Ps(r1, Lc) > Ps(r2, Lc) implies ĥ(r1, Lc) > ĥ(r2, Lc) (101)

¶ Proxy Theorem: Corollaries.

• Define:

◦ R = the set of all feasible decisions.

◦ R̂(Lc) = the set of feasible decisions which maximize the robustness and satisfice the

loss at Lc.

◦ R?(Lc) = the set of feasible decisions which maximize the probability of survival while

satisficing the loss at Lc.

◦ Explicitly:

R̂(Lc) =

{
r ∈ R : r = arg max

r∈R
ĥ(r, Lc)

}
(102)

R?(Lc) =

{
r ∈ R : r = arg max

r∈R
Ps(r, Lc)

}
(103)

Corollary 1 Any decision which maximizes the robustness also maximizes the probability of survival.

Given the conditions of theorem 1 and that neither R̂(Lc) nor R?(Lc) is empty, then:

R̂(Lc) ⊆ R?(Lc) (104)
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The following corollary is an important special case of theorem 1.

Corollary 2 Info-gap robustness to a scalar variable is a proxy for probability of survival for any loss

function.

Given the conditions of theorem 1 and that u is a scalar variable and that L(r, q) is an arbitrary scalar

loss function, then relations (100) and (101) hold.
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6.3.2 Simple Examples

We now consider a series of simple examples of the info-gap robustness function as a proxy

for the probability of survival. The first five are based on corollary 2, and the last two depend

on the full theorem 1.

Example 1 Uncertain Bayesian mixing of two models. An agent must make a choice, r, where

the outcome depends on which of two models of the world, A and B, is true. For instance,

a central-bank economist might wish to set a vector of interest rates, r, so that the expected

inflation, L(r, q), is less than a critical value, Lc, where q is the probability that model A is true.

The agent believes that the economy is described either by a neo-Keynesian model (A) or a

monetarist model (B). The agent’s degree of belief that model A is true is q̃, and that model

B is true is 1− q̃. However, q̃ is highly uncertain, and its uncertainty is represented by an

info-gap model Q(h, q̃). If the conditions of corollary 2 hold, in particular, if Q(h, q̃) expands

continuously, then the robustness of any choice, r, is a proxy for the probability of success of

that choice. That is, any change in the choice which augments the robustness cannot reduce

the probability that the requirement, L(r, q) ≤ Lc, is met. We will consider a variation on this

example in section 6.3.3.

Example 2 Risky and risk-free assets. An agent must determine the fraction r of a budget to

invest in risky assets, the remainder to be invested in risk-free bonds. The uncertainty in the

return to the risky asset, q, is represented by an info-gap model Q(h, q̃). Lc is a ‘reservation’

return. That is, the funds will be diverted to an alternative use if the returns, L(r, q), are not

confidently anticipated to exceed Lc. If the conditions of corollary 2 hold, then the robustness

of risky fraction r is a proxy for the probability that the expected returns, L(r, q), will exceed

Lc. Choosing r to maximize the robustness against uncertainty in q will also maximize the

probability that L(r, q) exceeds Lc.

Example 3 Foraging in an uncertain environment: Is the grass really greener? An agent must

choose how long, r, to stay in current conditions before moving to a new but uncertainly

known location. For instance, a foraging bug (or a human job seeker) must decide how long

to continue eating on its current bush before moving to a new and unknown bush. The relative

productivity of current and new bushes is q̃, whose uncertainty is quantified by an info-gap

model Q(h, q̃). The survival depends on total gain L(r, q) (of energy in the case of the bug)

being no less than a critical value Lc (needed for the bug to survive the night). If the conditions

of corollary 2 hold, then the robustness of duration r is a proxy for the probability that the total

gain will satisfy the survival requirement, L(r, q) ≥ Lc.
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Figure 14: Robustness
curves for the first experi-
ment.

Figure 15: Robustness
curves for the second ex-
periment.

Example 4 Ellsberg’s ‘paradox’ and crossing robustness curves. Mas-Colell et al (1995, p.207) ex-

plain the Ellsberg paradox (Ellsberg, 1961) in terms of perceptions of uncertainty which have

a natural formulation with info-gap decision theory as developed in (Ben-Haim, 2006, section

11.1).

Ellsberg’s observation, as adapted by Mas Colell et al, begins with two urns, R and H, where R

contains a well shaken mixture of 49 white and 51 black balls, while H contains an unknown

mixture of 100 white and black balls. Two balls are chosen randomly, one from each urn,

and their colors are not revealed. The agent must choose one of these balls in each of two

experiments. In the first experiment the agent wins $1000 only if the selected ball is black.

Most participants choose the ball from R, suggesting that their subjective probability for a

white ball from H is greater than 0.49. In the second experiment the agent wins $1000 only if

the selected ball is white. Again most respondents choose the ball from R even though they

are aware that the probability of a white ball from R is precisely 0.49. Ellsberg’s ‘paradox’ is

the agent’s anomalous disregard for the fact that the subjective probability for white balls is

presumably greater for urn H than for urn R.

The info-gap explanation of this behavior supposes that the agent wishes to reliably satisfice

the expected utility at no less than the reservation value Lc. The dominant uncertainty, q, is

the unknown fraction of white balls in urn H, represented by an info-gap modelQ(h, q̃). If the

conditions of corollary 2 hold, then the robustness of the choice between the urns is a proxy

for the probability of satisficing the expected utility. An info-gap robustness analysis for this

problem (Ben-Haim, 2006, section 11.1) yields the robustness curves of figs. 14 and 15.

In the first experiment (win on black) the robustness curve for choosing urn R lies strictly

above the robustness curve for choosing urn H, as in fig. 14. R is preferred both in terms

of expected return and robustness. In the second experiment (win on white) the robustness

curves for the two urns cross at high expected utility (very near the utility-axis), as in fig. 15,

indicating that R will be favored in most cases, as observed. Most of the agents in Ellsberg’s



\risk\lectures\rsb02.tex ROBUST-SATISFICING BEHAVIOR 36

experiments choose robustness-maximizing urns, which, according to our proxy theorem, is

equivalent to maximizing the probability of satisficing the expected utility. There is nothing

paradoxical in Ellsberg’s observations: most people are robust-satisficers.

Example 5 Multiple requirements. An agent must make decisions encoded in a vector r where

the outcome must satisfy multiple requirements: Li(r, q) ≥ Lc,i, i = 1, . . . , I. Uncertainty

of the parameter q is represented by an info-gap model, Q(h, q̃). The robustness for the ith

requirement alone is ĥi(r, Lc,i). If the conditions of corollary 2 hold, then each individual

robustness function, ĥi(r, Lc,i), proxies for the probability of satisfying the corresponding re-

quirement. Any change in the decision r which enhances all the robustness functions also

enhances the probabilities of satisfying each of the requirements.

Example 6 Forecasting an uncertain dynamical system. An agent chooses a mathematical model

with parameters r to forecast the behavior of a dynamical system whose true dynamics are

determined by uncertain parameters and functions u. The forecast error is L(r, u) = |L1(r)−
L2(u)| where each function Li is scalar-valued and independent of the argument of the other

function. This forecast error is a reducible and separable loss function. The best estimate of

the true dynamical parameters is ũ whose uncertainty is represented by an info-gap model

U (h, ũ). If the conditions of theorem 1 hold, then the robustness of forecasting with model r

proxies for the probability that the forecast error is no greater than Lc. Note that the forecast

model, parameterized with r, may be fundamentally different from (e.g. much simpler than)

the true model. Nonetheless, any change in r which enhances the robustness also increases

the probability of forecast success. Furthermore, a model parameterized with r may be very

different from a statistically estimated model. Nonetheless, if the r’s robustness exceeds the

robustness of the statistically estimated model (due to crossing of their robustness curves)

then model r has higher probability of successful forecasting. We will consider an example of

forecasting in greater depth in section 6.3.4.

Example 7 Managing exogenous uncertainties. Consider a system which an agent wishes to

control by taking action r. A vector u of uncertain quantities is exogenous to the system if u’s

info-gap model, U (h, ũ), does not depend on action r. Suppose the scalar loss function, L(r, u),

is reducible and separable, for instance if L(r, u) = L1(r) + L2(u) or if L(r, u) = L1(r)L2(u). If

the other conditions of theorem 1 hold as well, then the info-gap robustness for satisficing the

loss at a value Lc is a proxy for the probability that the loss will not exceed Lc.
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6.3.3 Example: Model Mixing

In this section we will explore a variation of example 1 discussed in section 6.3.2.

Consider a system for which the loss resulting from decision r is the following scalar function:

L(r, q) = A(r) + qB(r) (105)

where A(r) and B(r) are known functions but q is an uncertain parameter. For instance,

A(r) may be a linear model and B(r) a non-linear term of uncertain weight. Or, A(r) and

B(r) may be two competing models of loss where q is the uncertain measure of their relative

importance. There are no constraints on A(r) and B(r) other than that they are scalar functions

and B(r) 6= 0. The decision r may be a scalar, vector, or function.

The best estimate of q is q̃, which is non-zero,3 and the info-gap model for uncertainty in this

estimate is:

Q(h, q̃) =
{

q :
∣∣∣∣q− q̃

q̃

∣∣∣∣ ≤ h
}

, h ≥ 0 (106)

The robustness of decision r, with the requirement that the loss not exceed Lc, is:

ĥ(r, Lc) = max
{

h :
(

max
q∈Q(h,q̃)

L(r, q)
)
≤ Lc

}
(107)

An explicit expression in the present case is:

ĥ(r, Lc) =


0 if Lc < L(r, q̃)

Lc − L(r, q̃)
q̃|B(r)| else

(108)

Consider two decisions, r1 and r2, for which:

L(r1, q̃) < L(r2, q̃) and |B(r1)| > |B(r2)| (109)

That is, r2 has greater estimated loss (left relation) but its robustness curve is steeper (right

relation). This implies that the robustness curves for these decisions will cross. See fig. 16.

-

6 r2

L(r1,q̃) L(r2,q̃)

r1

0

ĥ(ri, Lc)

Lc

Figure 16: Crossing robustness curves.

3This example is readily modified for the case that q̃ = 0.
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The conditions of corollary 2 hold, so robustness is a proxy for the probability that the loss,

L(r, q), will not exceed Lc. While we know nothing about the probability distribution of q, we

are able to evaluate the robustness, ĥ(r, Lc), to uncertainty in q. If the conditions in eq.(109) do

not hold then one robustness curve lies strictly above the other, implying that robustness- and

probability-preferences, eqs.(91) and (93), agree at all values of critical loss Lc. If eq.(109) does

hold for a given pair of decisions, then we are able to determine the value of critical loss, Lc, at

which their robustness curves cross, implying reversal of preference between these decisions

based on value of the critical loss. We are not able to evaluate the probability of satisficing the

loss, but we can always determine which, among any collection of decisions, has the greatest

probability of satisficing the loss at any given level Lc.
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6.3.4 Example: Forecasting

In this section we will explore a specific realization of example 6 discussed in section 6.3.2.

Forecasting, in a broad sense, is done by meteorologists, stock brokers, foraging animals chas-

ing evasive prey, job-hunters, vote-seekers, and so on. In many situations historical data is

limited or incorrect, contextual information may be available but not manifested in historical

data, future “rules of the game” may deviate systematically from the past, and probabilistic

information is lacking. The probability that the forecast is accurate to within a given margin

is critical, though the probability distribution of the uncertain quantities is not known. If an

info-gap model represents the uncertainty, then the robustness of a forecasting algorithm is a

proxy for the probability that the forecast is accurate to a specified extent. This means that the

probability of success can be maximized by maximizing the info-gap robustness. We illustrate

that here.

Consider a linear regression of a scalar variable x against a vector y of N measurements, with

regression (or model) coefficients u:

x = uTy (110)

where the superscript T implies matrix transposition. We will formulate a model for forecast-

ing x, based on measured y, when u is uncertain.

The best estimate of u is ũ, based on historical data. However, the future evolution of the

system may deviate systematically from the historical behavior. We consider the following

info-gap model for uncertainty in the elements of u:

U (h, ũ) = {u : ũi − hvi ≤ ui ≤ ũi + hwi, i = 1, . . . , N} , h ≥ 0 (111)

where the vi and wi are non-negative and known. In particular, we are interested in asymmetric

uncertainty: vi 6= wi for at least some of the i’s, implying that the uncertainty-intervals for the

corresponding coefficients ui grow asymmetrically with increasing horizon of uncertainty h.

Asymmetric uncertainties based on contextual information are common under severe uncer-

tainty. Dramatic political events may indicate that market variables yi will tend to impact

outcomes (x) more in one direction than another, though actual data are not yet available.

Industrial growth suggests that global warming will increase, but there is great dispute about

the extent of increase. The sudden appearance of a single insect on a bush may signal to indi-

viduals of other species, currently feeding on that bush, that strong competition may shortly

emerge though the insect horde is not yet discernable. All these situations have asymmetric

uncertainty which can be encoded in an info-gap model such as eq.(111).

Consider a simplified forecasting model, based on M of the N variables in y:

xf = rTSy (112)
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where S is an M× N “selector” matrix whose rows are those M rows of the N × N identity

matrix which correspond to those elements of y upon which the forecast is based. The choice

of a low-dimensional model, such as eq.(112) if M < N, may be motivated by the limited

computational ability of the agent or by the agent’s severe uncertainty about the contribution

of some of the elements of y. The agent’s problem is to choose which elements of y to include

and how to weight them.

The loss function is the forecast error:

L(r, u) = |rTSy− uTy| (113)

This loss function is reducible and separable in the uncertain u with q(u) = uTy. The fore-

caster must choose the coefficient-vector r and the selector-matrix S so that the forecast errs

no more than Lc. The conditions of theorem 1 hold, so the info-gap robustness is a proxy for

the probability of forecasting with specified accuracy.

-

6

δ

δ=0

δ 6=0

0
0

ĥ(r, S, Lc)

Lc

Figure 17: Robustness
functions with δ = 0 and
δ 6= 0.

The robustness function is illustrated in fig. 17. Define δ = xf− ũTy, which is the discrepancy

between the forecasting model chosen by the agent, xf, and the best-estimate of the future

behavior of the system, ũTy. One would naively expect that δ = 0 is the best-bet forecast.

This is indeed the case if one aspires to very accurate forecast: requiring the forecast error,

Lc, to be very small. However, the robustness of achieving very small error is also very small

because of the trade-off between robustness and forecast-error, expressed by the positive slope

of the curves in fig. 17. If one can tolerate somewhat larger error then, as seen in fig. 17, the

robustness is greater with δ 6= 0 than with δ = 0. The question is to choose δ: how sub-

optimal should the forecasting model, xf, be? In light of theorem 1 we see that robustness is

a proxy for probability of forecast success. Thus, for Lc greater than the value at which the

curves cross in fig. 17, the probability of forecast success is better with δ 6= 0 than with δ = 0.

Since the robustness curves can be evaluated without any probabilistic information, the agent

can choose a forecasting model, xf = rTSy, with maximum robustness, which maximizes the

probability of forecasting with specified accuracy.
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7 Is Bin Laden at Abbottabad?

¶ Background material: Jeffrey A. Friedman and Richard Zeckhauser, 2015, Handling and

mishandling estimative probability: Likelihood, confidence, and the search for Bin Laden, In-

telligence and National Security, Vol. 30, No. 1, 77–99.

¶ The broader context: Important but uncertain probabilities:

•We’re developing a new product. What is the probability of large market share?

•We’re using a new material. What is the probability of long usable life?

•We’re using a new production technology. What is the probability of high reliability?

¶ The specific questions:

• Several different intelligence experts have estimated the probability that Osama Bin Laden

(OBL) is living at a specific location in Abbotabad, Pakistan (ABB). The estimates diverge

widely: 0.4 to 0.8.

• President Obama must decide whether or not to attack that site.

• Part of his decision hinges on these estimates.

• How to process these subjective “estimative probabilities”?

• How to choose between the various options: attack, don’t attack, gather more data?

7.1 Subjective Probability

¶ Estimative probability for one analyst:

• You are an intelligence expert. You have internalized lots of data and information.

•What is your subjective probability (estimative probability) that OBL is at ABB?

¶ Estimative probability for one analyst: Ramsey lottery.

• p = your estimative probability that OBL is at ABB. We want to estimate p.

• First lottery, L1:

◦ If OBL is at ABB, then you will win a large prize.

◦ If OBL is not at ABB, then you will win nothing.

What odds do you put on OBL being at ABB?

• Second lottery, L2:

◦ An urn contains 1000 thoroughly mixed balls: 300 red and 700 black.

◦ You will blindly draw a ball and:

— win a large prize if the ball is black.

— win nothing if the ball is red.
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• Question: Which lottery do you prefer?

◦ If you prefer L1 then p > 0.7. Repeat with 1000 balls, more than 700 black.

◦ If you prefer L2 then p < 0.7. Repeat with 1000 balls, less than 700 black.

• Continue this until you are indifferent between L1 and L2 when n = # black balls.

• Your estimative probability is p = n/1000.

¶ Combining estimative probabilities for 2 analysts with equal credibilities: Example.

• p1 = 0.4 = estimative probability of analyst 1 that OBL is at ABB.

• p2 = 0.8 = estimative probability of analyst 2 that OBL is at ABB.

• ci = 0.5 = relative credibility of analyst i: the probability that i’s estimate is right, i = 1, 2.

• How to combine this information? Compound lottery:

• Two urns, each with 1000 thoroughly mixed red and black balls:

◦ U1 has 600 red and 400 black balls.

◦ U2 has 200 red and 800 black balls.

• You will blindly choose an urn (equal prob for each urn), and blindly choose a ball, and:

◦ win a large prize if the ball is black.

◦ win nothing if the ball is red.

• The probability of black (and large prize) is pcmb = 0.5× 0.4 + 0.5× 0.8 = 0.6.

• Any other estimate would be inconsistent:

◦ pcmb > 0.6 would give analyst 2 extra credibility.

◦ pcmb < 0.6 would give analyst 1 extra credibility.

¶ Combining estimative probabilities for N analysts with different credibilities.

• pi = estimative probability of analyst i that OBL is at ABB, i = 1, . . . , N.

• ci = relative credibility of analyst i, where ci ≥ 0 and ∑N
i=1 ci = 1.

• How to combine this information? Compound lottery:

• N urns, each with 1000 thoroughly mixed red and black balls:

Ui has 1000(1− pi) red and 1000pi black balls, i = 1, . . . , N.

• You will choose an urn with probability ci for urn i, and blindly choose a ball, and:

◦ win a large prize if the ball is black.

◦ win nothing if the ball is red.

• The probability of black (and large prize), which is the combined estimative probability

that OBL is at ABB is:

pcmb =
N

∑
i=1

ci pi (114)

• Any other pcmb would be inconsistent with the estimates pi and the credibilities ci.
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¶ How to assess confidence in the combined estimate?

• Friedman and Zeckhauser suggest responsiveness:

“have analysts not merely state estimative probabilities, but also to explain how much those

assessments might change in light of further intelligence. This attribute might be termed an

estimate’s responsiveness.” (p.92)

• This is closely related to—but different from—info-gap robustness:

◦ How much can the evidence change without altering the estimate.

◦ How much can the estimates change without altering the decision.

• Low responsiveness is similar to high robustness.

• Confidence in combined estimate is high if:

◦ Responsiveness is low.

◦ Robustness is high.

7.2 Info-Gap Robustness Analysis

¶ System model:

• p = vector of estimative probabilities for N analysts.

• c = vector of credibilities for N analysts.

• p̃ = known specific realization of p for given analysts in specified conditions.

• c̃ = known specific realization of c for given analysts in specified conditions.

• pcmb(p, c) = cT p = combined probability that OBL is at ABB, from eq.(114).

¶ U (h) = Info-gap model of uncertainty for p and c.

¶ Decision variable:

A =

{
0, Don’t attack ABB

1, Attack ABB
(115)

¶ Binary decision with nominal estimates:

•We will choose A = 0 if:

pcmb( p̃, c̃) ≤ pcr (116)

•We will choose A = 1 if:

pcmb( p̃, c̃) ≥ pcr (117)

pcr is a user-chosen critical probability.
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§ How confident are we in the decision?

¶ Another possibility is to defer decision and gather more information.

¶ Ternary decision with nominal estimates:

•We will choose A = 0 if:

pcmb( p̃, c̃) ≤ pcr,1 (118)

•We will gather more information before deciding what to do if:

pcr,1 ≤ pcmb( p̃, c̃) ≤ pcr,2 (119)

•We will choose A = 1 if:

pcmb( p̃, c̃) ≥ pcr,2 (120)

¶We will consider the binary decision algorithm of eqs.(116) and (117).

¶ Robustness: max horizon of uncertainty up to which decision does not change.

¶ Robustness against missed opportunity when A = 0:

ĥ0(pcr) = max
{

h :
(

max
p,c∈U (h)

pcmb(p, c)
)
≤ pcr

}
(121)

¶ Robustness against erroneous attack when A = 1:

ĥ1(pcr) = max
{

h :
(

min
p,c∈U (h)

pcmb(p, c)
)
≥ pcr

}
(122)

¶ Inverse robustness functions:

• m0(h) = inner maximum in eq.(121). Inverse of ĥ0(pcr).

• m1(h) = inner minimum in eq.(122). Inverse of ĥ1(pcr).

• Zeroing:

m0(0) = pcmb( p̃, c̃) = m1(0) (123)

• Trade offs:

◦ m0(h) increases as h increases.

◦ m1(h) decreases as h increases.

¶ Useful function:

x+ =


0, if x < 0

x, if 0 ≤ x ≤ 1

1, if 1 < x

(124)
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¶ Robustness functions, example with 2 analysts:

• The info-gap model for N analysts:

U (h) =
{

p, c : 0 ≤ pi ≤ 1,
∣∣∣∣ pi − p̃i

p̃i

∣∣∣∣ ≤ h, ci ≥ 0,
N

∑
i=1

ci = 1,
∣∣∣∣ ci − c̃i

c̃i

∣∣∣∣ ≤ h, ∀i

}
, h ≥ 0 (125)

◦ Unbounded family of nested sets of p and c vectors.

◦ p-vectors not normalized. c-vectors normalized. Why?

• The combined estimative probability for 2 analysts is:

pcmb(p, c) = cT p = c1p1 + (1− c1)p2 (126)

•Without loss of generality assume: p̃1 ≥ p̃2.

• Consider m0(h): inverse robustness against missed opportunity. It occurs for:

p1 = [(1 + h) p̃1]
+ , p2 = [(1 + h) p̃2]

+ , c1 = [(1 + h)c̃1]
+ (127)

So:

m0(h) = [(1 + h) p̃1]
+ [(1 + h)c̃1]

+ +
(

1− [(1 + h)c̃1]
+
)
[(1 + h) p̃2]

+ (128)

• Special case:

p̃1 ≥ c̃1 ≥ p̃2 (129)

• Define:

hp1 =
1
p̃1
− 1, hp2 =

1
p̃2
− 1, hc1 =

1
c̃1
− 1, (130)

From eq.(129):

hp1 ≤ hc1 ≤ hp2 (131)

• From eq.(128) we now see that the inverse robustness is:

m0(h) =


(1 + h)2 p̃1c̃1 + (1 + h)[1− (1 + h)c̃1] p̃2 if h < hp1

(1 + h)c̃1 + (1 + h)[1− (1 + h)c̃1] p̃2 if hp1 ≤ h ≤ hc1

1 if hc1 < h

(132)

• This inverse robustness function plotted in fig. 18, p.46, illustrating zeroing and trade off.

• Note relatively low robustness, especially for pcr < 0.85.

• Note substantial cost of robustness, especially for pcr < 0.85.
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Figure 18: Robustness function from eq.(132).

¶ Continue previous example, and consider 2 options:

• Current state of knowledge is ( p̃, c̃). Possible future state of knowledge is ( p̃′, c̃′):

p̃, c̃ : p̃1 ≥ c̃1 ≥ p̃2 and p̃′, c̃′ : p̃′1 ≥ c̃′1 ≥ p̃′2 (133)

where:

p̃T c̃ > ( p̃′)T c̃′ and
1
c̃′1
− 1 <

1
c̃1
− 1 ⇐⇒ c̃′1 > c̃1 (134)

• Left relation implies greater pcmb for non-prime: nominal preference for non-prime op-

tion.

• Right relation implies greater confidence in prime option.

• The robustness curves for the two options cross one another as shown in fig. 19, p.46.

• This implies preference reversal between the options.
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Figure 19: Robustness functions from eq.(132) for the two options in eqs.(133) and (134).

¶ Continue previous example with one difference, and consider 2 options:

• Current state of knowledge is ( p̃, c̃). Possible future state of knowledge is ( p̃′, c̃′):

• Retain eq.(133):

p̃, c̃ : p̃1 ≥ c̃1 ≥ p̃2 and p̃′, c̃′ : p̃′1 ≥ c̃′1 ≥ p̃′2 (135)
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Retain left side but alter right side of eq.(134):

p̃T c̃ > ( p̃′)T c̃′ and
1
c̃′1
− 1 >

1
c̃1
− 1 ⇐⇒ c̃′1 < c̃1 (136)

• Left relation implies greater pcmb for non-prime: nominal preference for non-prime op-

tion.

• Right relation implies greater confidence in non-prime option.

• The robustness curves for the two options do not cross one another as shown in fig. 20.

• This implies robust dominance of one of the options.
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Figure 20: Robustness function from eq.(132) for the two options in eqs.(135) and (136).


