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“It is true that convictions can best be supported with experience and clear thinking. On
this point one must agree with the extreme rationalist. The weak point of his conception is,
however, this, that those convictions which are necessary and determinant for our conduct
and judgments, cannot be found solely along this solid scientific way.

“For the scientific method can teach us nothing else beyond how facts are related to,
and conditioned by, each other. . . . [Yet] knowledge of what ‘is’ does not open the door
directly to what ‘should be’. One can have the clearest and most complete knowledge of
what ‘is’, and yet not be able to deduct from that what should be the ‘goal’ of our human
aspirations.” Albert Einstein, Out Of My Later Years, pp21–22. Thames and Hudson Pub.,
London, 1950.
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1 The Problem

¶We have learned that, for ĥ(q, rc), bigger is better.
But now we face the questions:
• How big is big enough?
•What is the utility of a marginal increment in ĥ?
• How do we evaluate the numerical value of ĥ

in terms of
subjective personal or social values?

¶ A similar problem arises in probabilistic decision theory.
If Ps = probability of success,
Then bigger is better for Ps just as for ĥ.
But the same value judgment arises about Ps as about ĥ:

How big is big enough?

¶ Value judgment as calibration:
How to calibrate ĥ in
subjective, value-based linguistic terms
such as: big enough, too small, etc.

¶We will consider three methods for calibrating ĥ:
1. Prior experience.
2. Dimensional normalization.
3. Severity of Consequences.
All three are in fact cases of reasoning by analogy.

¶ Calibration: incremental or absolute?
• Incremental calibration: how significant is ∆ĥ?
• Absolute calibration: how robust (i.e. safe) is ĥ?

• Incremental calibration: plausible answer with analogical reasoning.
• Absolute calibration:
◦ No solution.
◦Moral version of absolute space: does not have meaning.
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2 Prior Experience

¶ Suppose we have a system S1 which:
1. We are familiar with.
2. Performs well.
3. Has robustness ĥ1.

¶ Now consider a system S2 which:
1′. Is similar to S1 in important respects.
2′. Has unknown performance.
3′. Has robustness ĥ2 which is close to ĥ1.

¶We may tend to conclude that,
by analogy between S1 and S2,
S2 will tend to perform well, like S1.
This suggests that ĥ2 is adequate robustness.

¶ Our reasoning here is:
1. S1 and S2 are similar.
2. S1 performs well.
3. Therefore S2 will tend to perform well;

and ĥ2 will tend to be adequate.
This is reasoning by analogy:

Things which are similar in some respects
will tend to be similar in other respects as well.

Reasoning by analogy is not proof.
Reasoning by analogy is plausible inference.
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3 Dimensional Normalization

¶ The horizon of uncertainty, h, of an info-gap model may have physical units.
For instance, if u(x) = uncertain quantity of pollutant, [kg/m2],
whose info-gap model is:

U (h, ũ) = {u(x) : |u(x)− ũ(x)| ≤ hψ(x)} , h ≥ 0 (1)

we see that [h] = [u(x)] = [ũ(x)] = [kg/m2]. (ψ(x) is a dimensionless envelope.)

Or, for example, if u(t) = uncertain mechanical stress, [N/m2], whose info-gap model is:

U (h, ũ) =
{

u(t) :
∫ ∞

0
(u(t)− ũ(t))2 dt ≤ h2

}
, h ≥ 0 (2)

then [h] = [u]
√

sec = N
√

s
m2 .

¶ The robustness ĥ is the least upper bound of a set of h-values:

ĥ = max {h : Some critical condition holds} (3)

Thus ĥ and h always have the same units.

¶ This implies that:
• There is no inherent calibration of ĥ in absolute units.
•We cannot say ‘ĥ = 106’ implies ‘ĥ is large’.
•We must calibrate the units of ĥ in some way.

¶ One type of calibration of ĥ is based on:
• physical reasoning,
• engineering judgment,
• economic judgment,
• etc.
These considerations can normalize ĥ to dimensionless form.

¶ For instance, consider the envelope-bound info-gap model in eq.(1) on p. 4.
The robustness is dimensional: [ĥ] = [ũ] = kg/m2.

However, ĥ
ũ is dimensionless.

ĥ
ũ � 1 suggests: Fluctuations which are large

w.r.t. the nominal function
do not cause failure.

suggests: plausibly reliable system.
while
ĥ
ũ � 1 suggests: Fluctuations which are small

w.r.t. the nominal function
entail the possibility of failure.

suggests: plausibly risky system.
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¶ For instance, consider the energy-bound info-gap model in eq.(2) on p. 4.

The robustness is dimensional: [h] = [u]
√

sec = N
√

s
m2 .

Suppose T is a typical time constant of the system. E.g.:
• Decay time.
• Transient duration.
• Lifetime.
• Etc.
ũ(t) is a typical u-function.
So ũ(t)

√
T is a typical-valued function

whose dimensions are the same as ĥ:
[ĥ] = [ũ(t)

√
T].

Thus ĥ
ũ(t)
√

T
is dimensionless.

If ĥ
ũ(t)
√

T
� 1 then all functions “much larger” than typical

do not cause failure.
ĥ is plausibly large enough;
The system is plausibly reliable.

If ĥ
ũ(t)
√

T
� 1 then there are functions “close” to typical

which cause failure.
ĥ is plausibly too small;
The system is plausibly risky.

¶ Calibration by dimensional normalization
is a special case of reasoning by analogy.

Recall that an analogical inference is:
Things which are similar in some respects
will tend to be similar in other respects.

¶ For example, when we concluded that:
ĥ

ũ(t)
√

T
� 1 implies ‘high robustness’

what analogy are we making?

1. Since ĥ
ũ(t)
√

T
� 1

Only loads which are:
very different from ũ(t)

cause failure.
2. Such loads seem rare, extraordinary, unusual.
3. Thus, by analogy, failure seems rare, extraordinary, unusual

and the system seems reliable.
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4 Analogical Reasoning

¶ Now we consider more rigorously the problem of calibrating ĥ(q, rc).

¶ Stating the problem more quantitatively:
ĥ(q, rc) depends on the decision vector q.
Let q1 and q2 be two different decisions, for which:

ĥ(q1, rc) > ĥ(q2, rc).
This means that, in terms of robustness:

q1 is better than q2.
But by how much?
Is q1 substantially, qualitatively better than q2?
We seek an evaluation in linguistic terms
of quantitative increments in ĥ(q, rc).

¶ Analogy, metaphor and translation:
•We want to translate ĥ or ∆ĥ from math to natural human language.
•We want to extend the meaning of ĥ or ∆ĥ.
•Metaphor extends meaning. E.g. “river of time”.
• Analogical reasoning is metaphor between two languages.
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¶ For any two entities, f1 and f2,
If f1 is “significantly greater” than f2

we will write: f1 � f2.
These entities may be numbers
or words: linguistic values.
Linguistic example: f = reliability of a system.
where f takes the values “low”, “moderate”, “high”, etc.
Then “high” � “low”.

6

-
f2 f1

ĥ( f1)

ĥ( f2)

Figure 1: Illustration of calibration by analogy.

¶ Now suppose that the robustness function ĥ( f ) increases with f (see fig. 1):

f1 � f2 (4)

and:
ĥ( f1) > ĥ( f2) (5)

Eqs.(4) and (5) analogically imply that:

ĥ( f1) � ĥ( f2) (6)

¶ Eqs.(4)–(6) are an inference by analogy:
1. The f values are ranked by significant increments.
2. The f values and the ĥ values agree in ordinal ranking.
3. Hence the ĥ values tend to be ranked by significant increments.

¶ Recall that an analogical inference is:
Things that are similar in some respects,
will tend to be similar in other respects.

Analogy is not proof.
Analogy is plausible explanation.
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6

-
f2 f1

ĥ( f2)

ĥ( f1)

Figure 2: Illustration of calibration by reverse analogy.

¶ There is also reasoning by reverse analogy. (see fig. 2)
Instead of: (4) and (5) analogically imply (6).
We have:

f1 � f2 (7)

and
ĥ( f2) > ĥ( f1) (8)

analogically imply that:
ĥ( f2) � ĥ( f1) (9)
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6

- g or f

A B

C

f2 f1

g2 g1
ĥ( f2, g2)

ĥ( f1, g2)

ĥ( f2, g) vs. g

ĥ(h, g2) vs. f

Figure 3: Illustration of calibration by analogy with two variables.

¶We can also concatenate analogical inferences (fig. 3).
Suppose that ĥ depends on two variables: ĥ( f , g).

1. First analogical inference:

f1 � f2 and ĥ( f1, g2) > ĥ( f2, g2) (10)

analogically imply that:
ĥ( f1, g2)︸ ︷︷ ︸

B

� ĥ( f2, g2)︸ ︷︷ ︸
C

(11)

2. Suppose ĥ( f2, g) increases with g.
Suppose that g1 is a value such that:

ĥ( f2, g1)︸ ︷︷ ︸
A

= ĥ( f1, g2)︸ ︷︷ ︸
B

(12)

3. Second analogical inference: Inference (11) (B � C) with:

ĥ( f2, g1)︸ ︷︷ ︸
A

= ĥ( f1, g2)︸ ︷︷ ︸
B

and g1 > g2 (13)

analogically imply that:
g1 � g2 (14)

¶We now consider an example of analogical inference for calibrating ĥ
by severity of consequences.



\risk\lectures\vjud02.tex VALUE JUDGMENTS 10

5 Calibration by Consequence Severity

¶ Surface treatment problem:
• Determine program of treatment for a region.

E.g. apply protective material, apply fertilizer, allow grazing, etc.
•Model: degree of influence as function of degree of treatment on the region.
• Use model to determine degree of treatment.
•Model is uncertain.
• Determine the treatment to satisfice the level of influence.
• Evaluate robustness function.
• Numerical values of influence are understood linguistically.
• Calibrate robustness function to find significant increments of ĥ.
• Use calibrated robustness function to determine degree of treatment.

¶ First we evaluate ĥ(q, rc).
Then we use analogical reasoning by consequence severity

to calibrate ĥ(q, rc) and determine treatment.

5.1 Robustness function

¶ Basic terms:
x = position in region. 0 ≤ x ≤ 1.
q(x) = density of treatment at x.
b(x) = uncertain influence function.
R(q, b) = benefit to region due to treatment. Numerical values understood qualitatively.

¶Model of benefit function:

R(q, b) =
∫ 1

0
b(x)q(x)dx (15)

b(x) = uncertain influence function.
= benefit at x from unit treatment at x.

Note: the model R(q, b) for how treatment q influences the region is uncertain.

¶What we know about the uncertain part of the model, b(x):
• The nominal function, b̃(x).
• b(x) deviates from b̃(x):

◦ The deviation is not erratic.
◦ Sudden shifts in u(x) are not plausible.

• Variation of b(x) is greatest in the mid-region.
• Variation of b(x) vanishes at the boundaries.
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¶ Use an envelope-slope-bound info-gap model:

U (h, b̃) =
{

b(x) = b̃(x) + u(x) : u(0) = u(1) = 0,
∣∣∣∣du(x)

dx

∣∣∣∣ ≤ hψ(x)
}

, h ≥ 0 (16)

where ψ(x) is the known envelope function.

¶ Critical performance requirement:

R(q, b) ≥ rc (17)

¶ Robustness function:

ĥ(q, rc) = max

{
h :

(
min

b∈U (h,b̃)
R(q, b)

)
≥ rc

}
(18)

¶ The benefit function, eq.(15) on p.10, can be written:

R(q, b) =
∫ 1

0
b̃(x)q(x)dx︸ ︷︷ ︸

R̃(q)

+
∫ 1

0
u(x)q(x)dx (19)

R̃(q) is the nominal, error-free benefit from treatment q(x).
¶ Evaluate the robustness function:

Define the following known function:

η(x) =
∫ x

0
q(x′)dx′ =⇒ dη(x) = q(x)dx (20)

The right-most integral in eq.(19) is found by integration by parts
(∫ b

a gd f = g f |ba −
∫ b

a f dg
)

:

∫ 1

0
u(x)q(x)dx =

∫ 1

0
u(x)dη(x) (21)

= u(x)η(x)
∣∣∣1
0︸ ︷︷ ︸

0

−
∫ 1

0
η(x)

du(x)
dx

dx (22)

Hence the minimum benefit up to info-gap h is:

min
b∈U (h,b̃)

R(q, b) = R̃(q)− h
∫ 1

0
|η(x)|ψ(x)dx (23)

Equating this to rc and solving for h yields ĥ:

ĥ(q, rc) =
R̃(q)− rc∫ 1

0 |η(x)|ψ(x)dx
(24)

unless this is negative, in which case ĥ(q, rc) = 0.
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5.2 Special Case

¶ Assumptions:
q = density of treatment = constant over x ∈ [0, 1].
b̃(x) = b0 + b1 sin πx = known nominal influence function.
ψ(x) = known envelope function = sin πx.
¶With these assumptions the robustness function becomes:

ĥ(q, rc) = πb0 + 2b1 −
πrc

q
(25)

Eq.(25) shows that, at fixed rc, ĥ(q, rc) increases with increasing q, fig. 4.
Eq.(25) shows that, at fixed q, ĥ(q, rc) decreases with increasing rc, fig. 4.

6

-

rc
consequence

severity
(low) (hi)

qtreat-ment

ĥ(q, rc,2) vs. q

ĥ(q2, rc) vs. rc

Robustness

Figure 4: Robustness ĥ(q, rc) vs. rc and vs. q, eq.(25).

¶ Questions:
•What is a significant increment in ĥ?
•What is a significant increment in q?
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5.3 Calibration by Consequence Severity

6

-

rc,2 rc,1
consequence

severity

(low) (hi)

q2 q1treat-
ment

ĥ(q, rc,2) vs. q

ĥ(q2, rc) vs. rc

Robustness

6
?

6
?

∆ĥ(rc)

∆ĥ(q)

Figure 5: Robustness ĥ(q, rc) vs. rc and vs. q, eq.(25).

¶We answer these questions, for the special case, by consequence-severity calibration.

¶ Fig. 5 shows two robustness curves.
• The decreasing straight line shows trade-off of ĥ vs. rc.
• The increasing curve shows augmented ĥ resulting from increased treatment q.
• Two values of reward (benefit) are shown: rc,1 > rc,2.
• These levels of reward are understood intuitively:

rc,1 is substantially greater benefit than rc,2:
rc,1 � rc,2.
rc,1 is “high” benefit.
rc,2 is “low” benefit.

¶ Now concatenate 2 analogical inferences in fig. 5.
• First inference: fixed treatment q2:

∆ĥ(rc) = increment in robustness from rc,1 to rc,2.
By reverse analogical inference:
∆ĥ(rc) = significant increment in robustness.
That is:
rc,1 � rc,2 and ĥ(q2, rc,2) > ĥ(q2, rc,1) implies
ĥ(q2, rc,2) � ĥ(q2, rc,1).
That is: ∆ĥ(rc) is “large”.
• 2nd inference.

∆ĥ(q) = increment in robustness from q2 to q1 at fixed benefit rc,2.
Choose q1 so that ∆ĥ(q) = ∆ĥ(rc)

Now, with 1st inference (∆ĥ(rc) is “large”): we conclude:
ĥ(q1, rc,2) � ĥ(q2, rc,2).
Thus the increment in treatment from q2 to q1

is significant in analogy to the corresponding increment in ĥ.
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¶ Summary of this analogical argument:
1. The increment ∆h(q) from q2 to q1 (at fixed rc)

agrees in robustness to
the increment ∆h(rc) from rc,1 to rc,2.

2. The increment ∆h(rc) from rc,1 to rc,2 is a
qualitatively significant change in benefit,
by analogy to rc,2 � rc,1.

3. Thus the increment in treatment from q2 to q1

is expected, by analogy, to be significant.


