Lecture Notes on Managing Info-Gap Duration-Uncertainties in Projects

Yakov Ben-Haim Yitzhak Moda'i Chair in Technology and Economics Faculty of Mechanical Engineering Technion — Israel Institute of Technology Haifa 32000 Israel https://yakovbh.net.technion.ac.il yakov@technion.ac.il

§ Source material:

• Yakov Ben-Haim, 2006, *Info-Gap Decision Theory: Decisions Under Severe Uncertainty*, 2nd ed., Academic Press, section 3.2.6, chapter 12.

• Yakov Ben-Haim and Alexander Laufer, 1998, Robust reliability of projects with activityduration uncertainty, *ASCE Journal of Construction Engineering and Management*. 124: 125–132.

• Alexander Laufer and Yakov Ben-Haim, 1998, Robust reliability in project scheduling with time buffering, TME 469.

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These notes are no more than an aid in following the lectures.

Contents

1	Basic Problem	2
2	Project Reliability with a	
	Global Time Buffer: Theory	3
3	Calculating Uncertainty Weights	8
4	Example: Reliability as a Function of Global Time Buffer	9
5	Example: Real-Time Evaluation of Robustness	11
6	Enhancing Project Reliability	13
	6.1 Formulation	14
	6.2 Enhancing Reliability by Reducing Uncertainty	17
	6.3 Enhancing Reliability by Re-structuring	21
7	Enhancing Reliability with Local Time Buffers	26

 $^{^{0}\}$ lectures $\$ info-gap-methods $\$ lectures $\$ prj_mgt001.tex 20.1.2021 \odot Yakov Ben-Haim 2021.

1 Basic Problem

§ A project is characterized by:

- A flow-chart of tasks.
- Uncertainty in the duration of each task. (Alternatively: cost uncertainty.)
- Global requirement: complete project on time (or in budget).

 \S Questions:

- How robust is the project to task-duration uncertainty?
- How risky is the project?
- How can the robustness be increased (and the risk reduced)?
 - Re-structuring the project.
 - On-line monitoring.
 - Gathering information.
- How opportune is the project? Can windfalls be exploited? How?

2 Project Reliability with a Global Time Buffer: Theory

§ Consider a project whose task flow chart is:

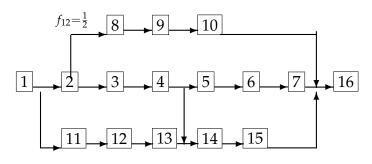


Figure 1: A 16-activity project schedule. Trans. p.blue11

This project has 4 task paths (Trans. p.blue11): Path 1: $1 \rightarrow 2 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 16$. Path 2: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 16$. Path 3: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 14 \rightarrow 15 \rightarrow 16$. Path 4: $1 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 16$.

 \S In order to answer the questions in section 1 on page 2 we need:

• Dynamic model: describing the task-path structure

and its relation to total project duration.

- Failure criterion.
- Uncertainty model.

 \S We first consider the **dynamic model**.

 t_n = unknown duration of *n*th task, n = 1, ..., N. $t = (t_1, ..., t_N)^T$ There are *M* paths.

 f_{mn} = fractional participation of task *n* in path *m*.

- *m*: path.
- *n*: task.

In path *m*, the task following task *n* begins when task *n* is fraction f_{mn} complete.

 \S E.g., in path 1 of fig. 1:

task 8 begins when task 2 is 1/2 complete:

 $f_{12} = 0.5.$

§ The duration of the *m*th path, c_m ,

equals the sum of the durations of **all tasks** weighted by their fractional participations in path *m*:

$$c_m = \sum_{n=1}^{N} f_{mn} t_n, \quad m = 1, \dots, M$$
 (1)

For instance, the duration of the 1st path is:

$$c_1 = 1 \cdot t_1 + \frac{1}{2} \cdot t_2 + 1 \cdot t_8 + 1 \cdot t_9 + 1 \cdot t_{10} + 1 \cdot t_{16}$$
(2)

Define F = matrix of participation factors $f_{mn} \in \Re^{M \times N}$. For instance, for fig. 1 (Trans. p.blue12):

§ Now the relation between task- and path-durations is:

$$c = Ft \tag{4}$$

The **dynamic model** is the duration of the longest path:

$$T = \|c\| = \max_{1 \le m \le M} |c_m| = \max_{1 \le m \le M} \sum_{n=1}^N f_{mn} t_n$$
(5)

Note that ||c|| is in fact a vector norm, sometimes called the "zero norm".

§ The failure criterion:

the project fails if the duration of the longest path exceeds a critical value:

$$T > t_{\rm c} \tag{6}$$

§ **Uncertainty model:** weighted fractional variations of task times.

$$\mathcal{U}(h,\tilde{t}) = \left\{ t : \frac{|t_n - \tilde{t}_n|}{\tilde{t}_n} \le w_n h, \quad n = 1, \dots, N \right\}, \quad h \ge 0$$
(7)

§ This is a family of nested sets.

Two levels of uncertainty:

• At fixed *h*: t_n , n = 1, ..., N are uncertain.

$$\widetilde{t}_n - w_n \widetilde{t}_n h \le t_n \le \widetilde{t}_n + w_n \widetilde{t}_n h \tag{8}$$

• *h*, the **horizon of uncertainty**, is unknown.

 \S The info-gap model in eq.(7) allows negative task durations. Not realistic. **Caution.**

\S Robustness function:

$$\hat{h} = \max h$$
 which precludes failure (9)

$$= \max\{h: \text{ failure is not possible}\}$$
(10)

$$= \max\left\{h: T \le t_{c} \text{ for all } t \in \mathcal{U}(h, \tilde{t})\right\}$$
(11)

$$= \max\left\{h: \max_{1 \le m \le M} \underbrace{\sum_{n=1}^{N} f_{mn} t_n}_{c_m} \le t_c \text{ for all } t \in \mathcal{U}(h, \tilde{t})\right\}$$
(12)

$$= \max\left\{h: \max_{1 \le m \le M} \max_{t \in \mathcal{U}(h,\tilde{t})} \sum_{n=1}^{N} f_{mn} t_n \le t_{c}\right\}$$
(13)

Recall that, for $t \in U(h, \tilde{t})$:

$$\tilde{t}_n - w_n \tilde{t}_n h \le t_n \le \tilde{t}_n + w_n \tilde{t}_n h \tag{14}$$

Thus:

$$\max_{t \in \mathcal{U}(h,\tilde{t})} c_m = \max_{t \in \mathcal{U}(h,\tilde{t})} \sum_{n=1}^N f_{mn} t_n$$
(15)

$$= \sum_{n=1}^{N} f_{mn} \left(\tilde{t}_n + w_n \tilde{t}_n h \right)$$
(16)

$$= \underbrace{\sum_{n=1}^{N} f_{mn} \widetilde{t}_n}_{\overline{a}} + h \underbrace{\sum_{n=1}^{N} f_{mn} w_n \widetilde{t}_n}_{f}$$
(17)

$$= \bar{c}_m + h f_m \tag{18}$$

The robustness is obtained by solving for *h*:

$$\max_{1 \le m \le M} \left(\overline{c}_m + h f_m \right) = t_c \tag{19}$$

We can decompose this according to the separate paths:

$$\hat{h}_m = \text{robustness of path } m$$
 (20)

which is the solution for *h* of:

$$(\overline{c}_m + h f_m) = t_c \tag{21}$$

which is:

$$\widehat{h}_m = \frac{t_c - \overline{c}_m}{f_m} \tag{22}$$

or zero if this is negative. for each m = 1, ..., M.

The overall project robustness is the lowest path-robustness:

$$\widehat{h} = \min_{1 \le m \le M} \widehat{h}_m \tag{23}$$

$$= \min_{1 \le m \le M} \frac{t_{\rm c} - \bar{c}_m}{f_m} \tag{24}$$

of zero if this is negative.

3 Calculating Uncertainty Weights

§ Recall the info-gap model of eq.(7):

$$\mathcal{U}(h,\tilde{t}) = \left\{ t : \frac{|t_n - \tilde{t}_n|}{\tilde{t}_n} \le w_n h, \quad n = 1, \dots, N \right\}, \quad h \ge 0$$
(25)

We now consider the choice of the uncertainty weights, w_n .

 \S There are several obvious ways to go about it. I will mention two.

Notation:

 t_i = unknown duration of *i*th task.

 \tilde{t}_i = estimated duration of *i*th task.

- \tilde{t}_{is} = estimated shortest duration of *i*th task.
- $\tilde{t}_{i\ell}$ = estimated longest duration of *i*th task.

N = number of tasks.

§ **One method** for calculating uncertainty weights generates an **asymmetrical info-gap model.** The info-gap model is:

$$\mathcal{U}(h)\left\{t: \max[0, \, \widetilde{t}_i - (\widetilde{t}_i - \widetilde{t}_{is})h] \le t_i \le \widetilde{t}_i + (\widetilde{t}_{i\ell} - \widetilde{t}_i)h, \, i = 1, \dots, N\right\}, \quad h \ge 0$$
(26)

Thus t_i belongs to an interval which expands around \tilde{t}_i as h grows. The interval expands at rate $\tilde{t}_{i\ell} - \tilde{t}_i$ above \tilde{t}_i and at rate $\tilde{t}_i - \tilde{t}_i$ below \tilde{t}_i . The "max" prevents negative task durations.

§ **Another method** for calculating uncertainty weights generates a **fractional-error infogap model.** The idea is simply to average the span from shortest to longest estimated duration. The uncertainty weight for the *i*th task is:

$$w_i = \frac{\widetilde{t}_{i\ell} - \widetilde{t}_{i\mathrm{s}}}{(1/N)\sum_{j=1}^N (t_{j\ell} - t_{j\mathrm{s}})}$$
(27)

Now the info-gap model for duration uncertainty is:

$$\mathcal{U}(h)\left\{t: \left|\frac{t_i - \tilde{t}_i}{\tilde{t}_i}\right| \le hw_i, \ i = 1, \dots, N\right\}, \quad h \ge 0$$
(28)

4 Example: Reliability as a Function of Global Time Buffer

§ Consider the following data for \tilde{t} and w for the project in fig. 1 on p.3:

	п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	\tilde{t}_n	1	1	2	3	3	3	2	1	2	3	3	3	1	3	2	1
7	w _n	1	1	1	1	1	1	1	1	1	1	3	2	2	3	2	1

Table 1: Nominal durations and uncertainty-weights. (Trans. p.blue12)

With this data we can calculate robustnesses as a function of the critical time, t_c :

 \hat{h}_m = path robustnesses.

 \hat{h} = overall project robustness = min_{*m*} \hat{h}_m . See table 2.

t _c	h_1	h_2	h_3	h_4
16	0.88	0.00	0.14	0.063
18	1.12	0.13	0.24	0.13
20	1.35	0.25	0.33	0.19

Table 2: Path robustnesses with various allotted activity durations. (Trans. p.blue12)

§ Note the following points:

• At $t_c = 16$: $\hat{h}_2 = 0$ because $\tilde{c}_2 = 16$.

Thus path 2 is the **nominal-critical path:** Path with shortest estimated duration. Based on best estimates, this path would get our greatest attention.

• At
$$t_c = 18$$
: $\hat{h}_2 = \hat{h}_4$.

These two paths have the same robustness at this critical duration.

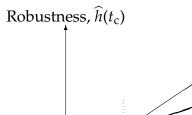
• At $t_c = 20$: $\hat{h}_2 > \hat{h}_4$. Now:

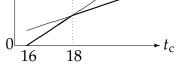
the **uncertainty-critical path** (path 4), which determines the overall robustness is different from

the **nominal-critical path** (path 2).

If $t_c = 20$ is acceptable, then path 4, not path 2, should get our greatest attention.

- \hat{h} increases monotonically, though not linearly, with t_c .
- This reversal of attention between paths 2 and 4 is demonstrated in fig. 2, p.10.





 \widehat{h}_2

 \hat{h}_4

Figure 2: Trade-off of robustness $\hat{h}_m(t_c)$ against critical time t_c , for two task paths.

5 Example: Real-Time Evaluation of Robustness

 \S We continue with the previous example.

We are 2.5 time units after project initiation:

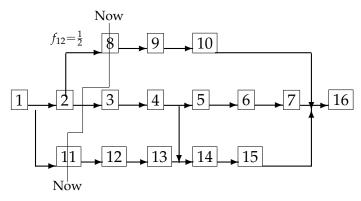


Figure 3: A 16-activity project schedule. The line labeled 'Now' indicates the current status of the project. (Trans. p.blue13)

 \S The current situation:

- Task 1 completed after 1.5 time units: 0.5 unit over-run.
- Task 2 completed in 1 time unit as planned.
- Task 8 has been running 0.5 time unit.
- Task 11 has been running 1 time unit.

§ New information in the current situation:

- Task 8 will definitely end in 0.5 time unit.
- Uncertainty in task 11 is reduced somewhat.
- Uncertainty in tasks 5, 6 & 14 is reduced substantially.

This new information is expressed in table 3:

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\widetilde{t}_n	0	0	2	3	3	3	2	0.5	2	3	2	3	1	3	2	1
w_n	0	0	1	1	0.5	0.5	1	0	1	1	2	2	2	1	2	1

Table 3: Nominal durations and uncertainty-weights. (Trans. p.blue13)

t _c	$t_{\rm c} + 2.5$	h_1	h_2	h_3	h_4
Remaining	Total				
Time	Time				
14	16.5	1.25	0.00	0.23	0.10
15.43	17.93	1.49	0.13	0.34	0.17
16.09	18.59	1.60	0.19	0.39	0.21

We now obtain the following path robustnesses (table 4):

Table 4: Path robustnesses with various allotted activity durations, evaluated during project execution. (Trans. p.blue13)

§ Conclusions from table 4:

- Estimated remaining time: $t_c = 14$ in column 1.
- Total project duration estimated at 16.5 (col. 2); greater than original estimate: 16. Due to time overrun of task 1.
- Zero robustness for estimated $t_c = 14$: $\hat{h}_2(14) = 0$ in column 4.
- Originally, table 2, p.9, and fig. 2, p.10, (see fig. 4 here) reversal of path criticality: $\hat{h}_2(16) = 0.$

$$\hat{h}_2(18) = \hat{h}_4(18) = 0.13.$$

$$\hat{h}_4(20) = 0.19 < 0.25 = \hat{h}_2(20).$$

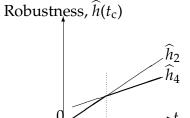


Figure 4: Trade-off of robustness $\hat{h}_m(t_c)$ against critical time t_c , for two task paths.

- Path 2 is now robust-critical at all estimated t_c 's (col. 4): no reversal of path criticality.
- Total durations slightly lower at the same positive robustnesses:

$$\circ 17.93 < 18 \text{ at } \hat{h} = 0.13$$

 $\circ 18.59 < 20 \text{ at } \hat{h} = 0.19$

6 Enhancing Project Reliability

 \S We now consider enhancing project reliability with two types of strategies:

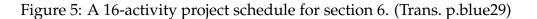
- Reducing uncertainty.
- Re-structuring the project.

6.1 Formulation

task 2 task 2 task 2 task 3 task 4 task 4 task 4 task 5 task 6 task 7 task 8 task 10 task 10task 11

§ Consider the following project flow chart:

task 12



task 14

§ The project has 5 task paths (Trans. p.blue29): Path 1: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 16$. Path 2: $1 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 4 \rightarrow 16$. Path 3: $1 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 16$. Path 4: $1 \rightarrow 5 \rightarrow 6 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 16$. Path 5: $1 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 16$. § Following is the participation matrix (Trans. p.blue29):

task 13

task 15

 \S The dynamical model is the duration of the longest path:

$$T = \max_{1 \le m \le M} \sum_{n=1}^{N} f_{mn} t_n \tag{30}$$

 \S The failure criterion is:

$$T > t_{\rm c} \tag{31}$$

§ The uncertainty model is:

$$\mathcal{U}(h,\tilde{t}) = \left\{ t : \frac{|t_n - \tilde{t}_n|}{\tilde{t}_n} \le w_n h, \quad n = 1, \dots, N \right\}, \quad h \ge 0$$
(32)

 \S Robustness of *m*th path:

$$\hat{h}_m = \max h \text{ without failure of } m \text{th path}$$
 (33)

$$= \max\left\{h: \underbrace{\sum_{n=1}^{N} f_{mn}\widetilde{t}_{n}}_{\widetilde{C}_{m}} + h \underbrace{\sum_{n=1}^{N} f_{mn}w_{n}\widetilde{t}_{n}}_{f_{m}} \leq t_{c}\right\}$$
(34)

$$= \max\left\{h: \ \widetilde{c}_m + hf_m \le t_c\right\} \tag{35}$$

So:

$$\hat{h}_m = \text{robustness of path } m$$
 (36)

$$= \frac{t_{\rm c} - \tilde{c}_m}{f_m} \tag{37}$$

or zero if this is negative. Hence the project robustness is:

$$\widehat{h} = \min_{1 \le m \le M} \widehat{h}_m \tag{38}$$

§ The data for this project are:

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\tilde{t}_n	1	4	6	3	2	3	5	4	4	2	1	2	1	3	1	2
w_n	1	2	2	2	1	2	1	1	0.5	1	1	1	1	1	1	1

Table 5: Nominal durations and uncertainty-weights. (Trans. p.blue30)

The resulting path robustnesses are:

t _c	h_1	h_2	h_3	h_4	h_5
17	0.035	0.058	0.00	0.13	0.70
19	0.10	0.14	0.10	0.25	0.90
21	0.17	0.21	0.20	0.38	1.10

Table 6: Path robustnesses with various allotted activity durations. (Trans. p.blue30)

§ Note:

- Path 3 is nominal-critical.
- At $t_c = 19$: $\hat{h}_1 = \hat{h}_3$. Other paths more robust.
- At $t_c = 21$: path 1 is uncertainty-critical path. Change of robust-critical path. Fig. 6.
- Large range of robustnesses. E.g., at $t_c = 21$:

$$\widehat{h}_1 = 0.17, \ \widehat{h}_5 = 1.10, \ \widehat{\overline{h}_1} = 6.5.$$

Meaning: some paths much more reliable than others.

Robustness, $\hat{h}(t_c)$

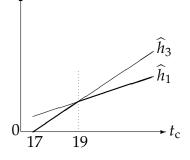


Figure 6: Trade-off of robustness $\hat{h}_m(t_c)$ against critical time t_c , for two task paths.

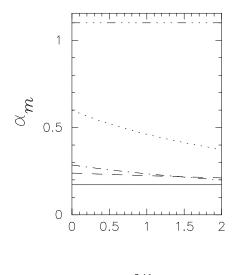
6.2 Enhancing Reliability by Reducing Uncertainty

§ Gathering information reduces uncertainty.

We can express this by reducing the uncertainty weights w_n .

Recall how we estimated uncertainty weights earlier: lower and upper time estimates.

Fig. 7 shows all 5 paths vs w_6 (=2 in table 5).



 w_6

Figure 7: \hat{h}_m versus w_6 . Symbols for paths 1 to 5: (1) solid; (2) dashed; (3) dot-dash; (4) dotted; (5) dash-dot-dot. (Trans. p.blue30)

 \S Note:

• Only path-robustnesses \hat{h}_2 , \hat{h}_3 , \hat{h}_4 vary with w_6 . Reason: only these paths involve task 6,

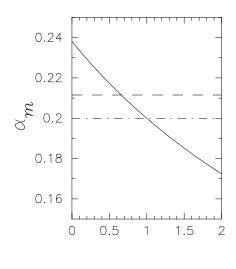
as seen in column 6 in *F*, eq.(29) on p.14.

- The original critical path, #1, remains critical even at $w_6 = 0$.
- There is no robustness benefit to improved information about task 6.

 \S We can influence path 1 by gathering information about task 2,

for which $w_2 = 2$ in table 5 on p.16.

Only path 1 depends on task 2 (See col. 2 of *F*, eq.(29) on p.14). Fig. 8 shows \hat{h}_1 , \hat{h}_2 and \hat{h}_3 vs w_2 .



 w_2

Figure 8: h_m versus w_2 . Symbols for paths 1 to 3: (1) solid; (2) dashed; (3) dot-dash. (Trans. p.blue31)

 \S Note:

- \hat{h}_1 grows, but not much, as $w_2 \rightarrow 0$.
- Path 3 becomes critical for w₂ ≤ 1. Thus not worth reducing w₂ < 1.

§ Now gather information about path 3. Explore effect of reducing w_5 , w_6 , w_7 and w_8 .

§ Suppose we are considering a short-term project, so that individual task over-runs will be small, about %10.

We ask: How small do these w_n values have to be in order to achieve the goal of $\hat{h} > \%10$? We ask: What project duration is required?

t _c	h_1	h_2	h_3	h_4	h_5									
	$w_5 = w_6 = w_7 = w_8 = 2$													
17	0.035	0.054	0.00	0.11	0.70									
19	0.10	0.13	0.065	0.22	0.90									
21	0.17	0.20	0.13	0.33	1.10									
	$w_5 = w_6 = w_7 = w_8 = 1$													
17	0.035	0.061	0.00	0.15	0.70									
19	0.10	0.14	0.12	0.31	0.90									
21	0.17	0.22	0.24	0.46	1.10									
	$w_5 =$	$w_6 = u$	$v_7 = w_8$	= 0.5										
17	0.035	0.066	0.00	0.19	0.70									
19	0.10	0.15	0.20	0.38	0.90									
21	0.17	0.24	0.40	0.57	1.10									

Table 7: Path robustnesses with various allotted activity durations. (Trans. p.blue32)

 \S Table 7 shows trade-off between:

reducing uncertainty and extending project duration.

- § **1st block:** $w_5 = \cdots = w_8 = 2$: We achieve $\hat{h} = 0.13 (\approx 0.10)$ only at $t_c = 21$. Path 3 is critical.
- § **2nd block:** $w_5 = \cdots = w_8 = 1$: We achieve $\hat{h} = 0.10$ at $t_c = 19$. Path 1 is critical.
- § **3rd block:** $w_5 = \cdots = w_8 = 0.5$: No further improvement because:
 - Path 1 is critical.
 - Path 1 is independent of w_5 , w_6 , w_7 and w_8 .

6.3 Enhancing Reliability by Re-structuring

In the original project structure, with $t_c = 21$, path 1 is uncertainty-critical.

Path 1: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 16$.

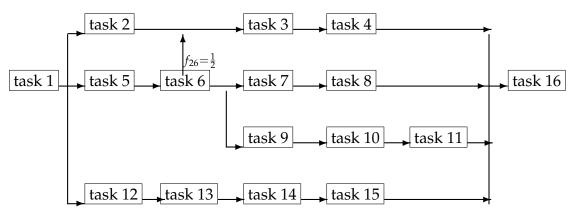


Figure 9: A 16-activity project schedule for section 6. (Trans. p.blue33)

Can we enhance reliability by restructuring this critical path? Suppose we employ alternative technology to

partially overlap tasks 3 and 4.

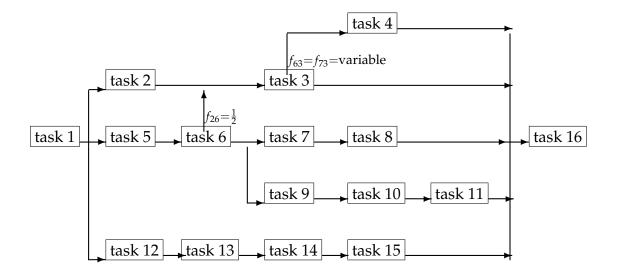


Figure 10: A revised 16-activity project schedule. (Trans. p.blue34)

 f_{63} = fractional participation of task 3 in path 6. f_{73} = fractional participation of task 3 in path 7.

$$f_{63} = f_{73} \tag{40}$$

t _c	h_1	h_2	h_3	h_4	h_5	h_6	h_7
17	0.17	0.23	0.00	0.13	0.70	0.17	0.23
19	0.26	0.33	0.10	0.25	0.90	0.26	0.33
21	0.35	0.43	0.20	0.38	1.10	0.35	0.43

The robustnesses for these 7 paths are in table 8:

Table 8: Path robustnesses with various allotted project durations. $f_{63} = f_{73} = 0.5$. $t_c = 21$. (Trans. p.blue35)

§ Note:

- Path 3 is critical at all values of t_c .
- Path 3 was unaffected by the restructuring: Path 3: $1 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 16$.

which is the same as before the structural change.

• The restructuring "robustified" the altered paths, and transferred criticality to a previously non-critical path. \S We now consider the effect on path 6:

Path 6: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 16$.

and compare with path 3 (critical path for $f_{63} = 0.5$):

Path 3: $1 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 16$.

which is unaffected by the restructuring.

Recall:

 $f_{63} = 1 \implies$ no overlap: task 4 starts when task 3 ends.

 $f_{63} = 0 \implies$ full overlap: tasks 3 and 4 start together.

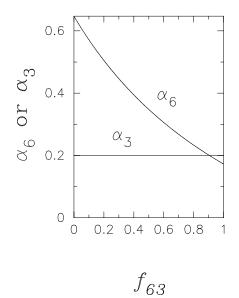


Figure 11: \hat{h}_3 and $\hat{h}_6(f_{63})$. $t_c = 21$. (Trans. p.blue35)

 \S Note:

- \hat{h}_6 increases as overlap increases ($f_{63}: 1 \rightarrow 0$).
 - $\hat{h}_6(f_{63} = 1) = 0.17.$ (No overlap)

 $\hat{h}_6(f_{63} = 0) = 0.65.$ (full overlap)

Substantial improvement with move from no- to full-overlap.

- \hat{h}_3 is constant since path 3 is unaffected by overlap.
- $\hat{h}_3 = 0.20$. and $\hat{h}_3 = \hat{h}_6$ at $f_{63} = 0.9$

Hence: no increase in project reliability for overlap > 10%.

 \S Now consider that the uncertainty in task 4

may increase with the degree of overlap.

Why? Because task 4 may depend on results obtained in task 3.

 \S So let w_4 increase with the degree of overlap:

 $w_4(f_{63} = 1) = 2$ $w_4(f_{63} = 0) = 5$ $w_4(f_{63})$ varies linearly with f_{63} .

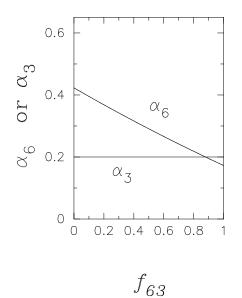


Figure 12: h_3 and $h_6(f_{63}, w_4)$. $t_c = 21$. (Trans. p.blue36)

 \S Note:

- $\hat{h}_6(f_{63} = 0) = 0.41$ as opposed to $\hat{h}_6(f_{63} = 0) = 0.65$ in fig. 11 on p.24. So improvement is still good, but not as good.
- $\hat{h}_3 = \hat{h}_6(f_{63})$ at very nearly the same f_{63} (~ 0.9). So virtually no impact on the transfer of criticality to path 3. Still, greatest useful overlap is ~10%.

7 Enhancing Reliability with Local Time Buffers

§ We now consider a multi-task project as before,

but now we are concerned with

local stability.

That is, we consider failure as:

time over-run of any individual task.

Of course, we are still concerned with over-all project duration.

 \S The basic idea is to allocate **local time buffers** to each task.

§ Define:

 $t_{\rm c}$ = duration for completion of project.

 \tilde{c}_m = nominal duration of path *m*.

Hence:

 $t_c - \tilde{c}_m$ = amount of "buffer time" which can be allotted among the tasks of path *m*.

The question: how to distributed this buffer among the tasks?

We will formulate the basic ouline of this problem,

but we will not study its detailed solution.

 \S There are *N* tasks, for which:

$$t_n = \text{unknown} \operatorname{actual} \operatorname{duration} \operatorname{of} \operatorname{task} n$$
 (41)

$$t = (t_1, \dots, t_N)^T \tag{42}$$

$$\tilde{t}_n = \text{known nominal duration of task } n$$
 (43)

$$\widetilde{t} = (\widetilde{t}_1, \dots, \widetilde{t}_N)^T$$
(44)

§ The uncertainty model is, as before:

$$\mathcal{U}(h,\tilde{t}) = \left\{ t : \frac{|t_n - \tilde{t}_n|}{\tilde{t}_n} \le w_n h, \quad n = 1, \dots, N \right\}, \quad h \ge 0$$
(45)

§ Let $b_n =$ **buffer time** following task *n*.

That is, b_n is the amount of spare time

during which we plan to be idle,

following completion of task *n*.

No delay results if task *n* completes during b_n . Define:

$$b = (b_1, \dots, b_N)^T \tag{46}$$

§ The time over-run of task *n* is:

$$\delta_n(t_n) = \max\left\{t_n, \tilde{t}_n + b_n\right\} - (\tilde{t}_n + b_n) \tag{47}$$

 \S As before, we need 3 components for reliability analysis:

- Dynamic model of the system.
- Failure criterion.
- Uncertainty model: eq.(45) on p.27.

§ **Failure:** If any single task exceeds its allotted time $\tilde{t}_n + b_n$

by more than a specified amount $\Delta_{c,n}$.

That is, failure occurs if:

$$\max_{1 \le n \le N} [\delta_n(t_n) - \Delta_{\mathbf{c},n}] > 0$$
(48)

 $\Delta_{c,n}$ can be chosen as any non-negative value.

 $\Delta_{c,n}$ can be different for different tasks.

§ Dynamic model:

The failure criterion is applied "locally", at each task.

Hence the path structure does not directly affect success or failure.

The dynamic model is simply the vector *t* of task durations.

§ **Robustness** of task *n* is the greatest tolerable value of *h*:

$$\widehat{h}_{n} = \max\left\{h: \max_{t_{n} \in \mathcal{U}(h,\widetilde{t})} \delta_{n}(t_{n}) \leq \Delta_{\mathsf{c},n}\right\}$$
(49)

This is obtained by solving the following relation for *h*:

$$\max_{t_n \in \mathcal{U}(h,\tilde{t})} \delta_n(t_n) = \Delta_{c,n}$$
(50)

§ Max over-run of task *n*, up to uncertainty *h*:

$$\max_{t_n \in \mathcal{U}(h,\tilde{t})} \delta_n(t_n) = \max\left\{ (1 + w_n h) \tilde{t}_n, \ \tilde{t}_n + b_n \right\} - (\tilde{t}_n + b_n)$$
(51)

where we understand that:

 $(1 + w_n h)\tilde{t}_n$ = greatest duration of task *n* possible at horizon of uncertainty *h*, e.g. allowed by $\mathcal{U}(h, \tilde{t})$.

 $\tilde{t}_n + b_n =$ greatest nominal duration of task *n*.

Hence the robustness of task *n* is:

$$\widehat{h}_n = \frac{b_n + \Delta_{\mathbf{c},n}}{\widetilde{t}_n w_n} \tag{52}$$

The overall robustness of the project is:

$$\widehat{h} = \min_{1 \le n \le N} \widehat{h}_n \tag{53}$$

$$= \min_{1 \le n \le N} \frac{b_n + \Delta_{c,n}}{\tilde{t}_n w_n}$$
(54)

§ We would like to choose the buffer times *b* to maximize \hat{h} .

One approach is to use a 'Robin Hood' principle:

- Take buffer time away from very robust tasks.
- Give buffer time to very vulnerable tasks.
- Continue this until the robustnesses of the tasks are as equal as possible.

We will not pursue this optimization problem.