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1 1-D Dynamic System:
European Central Bank Overnight Interest Rates

1.1 The Data and the Questions

Date Interest Implied
rate λ

1 Jan 1999 4.50
9 Apr 1999 3.50 0.778
5 Nov 1999 4.00 1.143
4 Feb 2000 4.25 1.063

17 Mar 2000 4.50 1.059
28 Apr 2000 4.75 1.056
9 Jun 2000 5.25 1.105

28 Jun 2000 5.25 1.000
1 Sep 2000 5.50 1.048
6 Oct 2000 5.75 1.045

11 May 2001 5.50 0.957
31 Aug 2001 5.25 0.955

Table 1: Interest rates for overnight loans at the European Central Bank (marginal lending facility). Source:
http://www.ecb.int/stats/monetary/rates/html/index.en.html

0

1

2

3

4

5

6

1 Jan 1999 to 31 Aug 2001

E
C

B
 In

te
re

st
 R

at
e

Figure 1: ECB Interest Rates

§ ECB overnight interest rates: table 1.
• First loans: 1999.
• Data through August 2001.
• 9 June 2000–31August 2001: µ = 5.4%, σ = 0.19%.
• Typical change: 25 basis points.
• Largest change: 100 basis points.

§ El-Qaeda attacks in US: 11 Sept 2001.
• Predict next interest rate on 9/12/2001, (1 day after 9/11).
• Asymmetric uncertainty: rate will go down (Why?), but by how much?

§ Questions:
• How to forecast the rate in light of the great uncertainty?
• How to assess confidence in the forecast?
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1.2 1-Step Dynamics and Robustness

§ Uncertain historical model of dynamical variable yn, e.g. interest rate:

y1 = λ1y0, y0 > 0, known, λ1 uncertain (1)

§ Info-gap model. Asymmetric uncertainty:

U(h, λ̃) =
{
λ1 : (1− h)λ̃ ≤ λ1 ≤ λ̃

}
, h ≥ 0 (2)

• λ̃: known and positive estimate transition coefficient.
• λ1: unknown true transition coefficient anticipated to be no greater, probably less, than λ̃.

§ Slope-adjusted forecasting model. We must choose the “slope” `:

ys1 = `y0 (3)

§ Performance requirement:
• Absolute error:

ε = |ys1 − y1| = |(`− λ1)y0| (4)

• Performance requirement:
ε ≤ εc (5)

§ Robustness:
• Definition:

ĥ(`, εc) = max

{
h :

(
max

λ1∈U(h)
ε(λ1)

)
≤ εc

}
(6)

• m(h) is inner maximum in eq.(6): inverse of ĥ(εc).
•We will consider a special case:

` ≤ λ̃ (7)

• Recall: y0 > 0 and known.
• m(h) occurs for an extremal value of λ1 at horizon of uncertainty h: either λ̃ or (1− h)λ̃.
• m(h) is the greater of the following:

m1(h) =
∣∣∣λ̃− `

∣∣∣ y0 (8)

m2(h) =
∣∣∣`− (1− h)λ̃

∣∣∣ y0 (9)

• Clearly m1(h) > m2(h) for small h because ` ≤ λ̃. To find the transition:

λ̃− ` ≥ `− (1− h)λ̃ (10)

⇐⇒ 2
(
λ̃− `

)
≥ hλ̃ (11)

⇐⇒ h ≤
2
(
λ̃− `

)

λ̃
(12)

• Hence:

m(h) =





(
λ̃− `

)
y0, if h ≤

2
(
λ̃− `

)

λ̃(
`− (1− h)λ̃

)
y0, else

(13)
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Figure 2: Robustness curve
ĥ(`, εc), eq.(14).

§ Robustness function: equate m(h) to εc and solve for h to find the robustness. One finds (fig. 2):

ĥ(`, εc) =





0, if εc <
(
λ̃− `

)
y0

εc +
(
λ̃− `

)
y0

λ̃y0
, else

(14)

• Trade off: robustness ĥ up (good) as critical error εc up (not good).
• Zeroing: No robustness at estimated error.
• Discontinuous robustness curve for ` < λ̃.
• Crossing robustness curves, fig. 3: preference reversal.
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Figure 3: Robustness vs normalized forecast error. λ̃ = 1, yT = 5.25.

§ Robustness curves for 3 slope-adjusted models, fig. 3:
• ` = 1.0 =⇒ 0% robustness at 0% error.
• ` = 0.95 =⇒ 10% robustness at 5% error (more robust than ` = 1.0).
• ` = 0.9 =⇒ 20% robustness at 10% error (more robust than ` = 0.95).

§ Forecast:
• Model used: ` = 0.9 =⇒ 20% robustness at 10% error.
• Forecast: ysT+1 = 0.9yT = 4.725.
• Outcome:
◦ yT+1 = 4.75 on 18.9.2001.
◦ −0.5% forecast error.
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1.3 Multi-Step Dynamics and Robustness

§ Uncertain historical model:

yt+1 = λt+1yt, t = 0, 1, 2 . . . , y0 > 0, known, λt+1 uncertain (15)

Thus:

yt = y0

t∏

j=1

λj , t = 1, 2, . . . (16)

§ Info-gap model. Asymmetric uncertainty:

U(h, λ̃) =
{
λt : (1− h)λ̃ ≤ λt ≤ λ̃, t = 1, 2, . . .

}
, h ≥ 0 (17)

Assume λ̃ > 0.

§ Slope-adjusted forecasting model. We must choose the ‘slope’ `:

yst+1 = `yst (18)

Thus:
yst = `ty0 (19)

§ Performance requirement:
• Absolute error:

εt = |yst − yt| =
∣∣∣∣∣∣
`t −

t∏

j=1

λj

∣∣∣∣∣∣
y0 (20)

• Performance requirement:
εt ≤ εc (21)

§ Robustness:
• Definition:

ĥt(`, εc) = max

{
h :

(
max
λ∈U(h)

εt(λ)

)
≤ εc

}
(22)

• m(h) is inner maximum in eq.(22): inverse of ĥt(εc).
• Special case:

` ≤ λ̃ (23)

• Recall: y0 > 0.
• If h ≤ 1 then mt(h) occurs for extremal values of λ1, . . . , λt at horizon of uncertainty h: all are

either λ̃ or (1− h)λ̃.
• mt(h), for h ≤ 1, is the greater of the following:

mt,1(h) =
(
λ̃
t − `t

)
y0 (24)

mt,2(h) ≥
∣∣∣∣∣∣
`t −

t∏

j=1

(1− h)λ̃
∣∣∣∣∣∣
y0 (25)

=
∣∣∣`t − (1− h)tλ̃t

∣∣∣ y0 (26)
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• Clearly mt,1(h) > mt,2(h) for small h. To find the transition:

λ̃
t − `t ≥ `t − (1− h)tλ̃t (27)

⇐⇒ λ̃
t − 2`t

λ̃
t ≥ −(1− h)t (28)

⇐⇒ (1− h)t ≥ 2`t − λ̃t

λ̃
t (29)

⇐⇒ 1− h ≥

2`t − λ̃t

λ̃
t




1/t

(30)

h ≤ 1−

2`t − λ̃t

λ̃
t




1/t

(31)

• Hence, for h ≤ 1:

mt(h) =





(
λ̃
t − `t

)
y0, if h ≤ 1−


2`t − λ̃t

λ̃
t




1/t

︸ ︷︷ ︸
hs(

`t − (1− h)tλ̃t
)
y0, if hs < h ≤ 1

(32)

which defines the constant, hs, at which mt(h) switches.
• Equate mt(h) to εc and solve for h to find the robustness. One finds:

ĥt(`, εc) =





0, if εc <
(
λ̃
t − `t

)
y0

1−
(
`ty0 − εc
λ̃
t
y0

)1/t

, if
(
λ̃
t − `t

)
y0 ≤ εc ≤ `ty0

(33)

Note that eq.(33) is valid only for values of εc for which ĥt ≤ 1.
• This robustness function, like eq.(14), p.4, shows:
◦ Discontinuity.
◦ Curve-crossing with ĥt(λ̃, ε).
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Figure 4: Robustness
curves, eq.(33), t = 1.

Figure 5: Robustness
curves, eq.(33), t = 2.

Figure 6: Robustness
curves, eq.(33), t = 3.

§ Results: figs. 4–6:
• Curve crossing.
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• Discontinuity of robustness curve occurs at larger εc for longer forecast (higher t.)
• Robustness curves shift right (bad) and fall (bad) as t increases. E.g.:

ĥt=3(εc = 0.4, ` = 0.85) = 0.4 < ĥt=2(εc = 0.4, ` = 0.85) = 0.43 < ĥt=1(εc = 0.4, ` = 0.85) = 0.55

(34)
• Cost of robustness decreases (good) as t increases.
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2 Regression Prediction of US Inflation Data

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-
Macmillan, section 6.1.

2.1 Data
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Figure 7: US inflation
vs. year, 1961–1965.

Figure 8: US inflation
vs. year, 1961–1966.

Figure 9: US inflation
vs. year, 1961–1970.
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Figure 10: US inflation
vs. year, 1961–1993.

§ US inflation:
• ’61–’65: Linear?
• ’61–’66: Quadratic?
• ’61–’70: Piece-wise linear?
• ’61–’93: A mess?

§ Modeling and predicting US inflation:
• ’61–’65 Linear? Quadratic?
• Use the ’61–’65 model for predicting ’66:

yri = c0 + c1ti + c2t
2
i (35)
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Figure 11: US inflation
vs. year, 1961–1965.

2.2 System Model: Mean Squared Error

§ System model: Mean Squared Error (MSE).
For any vector of coefficients, c, the MSE is:

S2
N (c) =

1

N

N∑

i=1

(yi − yri )2 (36)

N = 5 for ’61–’65. y1, . . . , yN are data. yri is from eq.(35), p.8.

§ Least-squares estimate (LSE):
• Definition:

c̃ = argmin
c
S2
N (c) (37)

• Meaning: c̃ is optimal estimate w.r.t. historical data.
• Question: Is c̃ optimal wrt future data?
• LS regression: c̃ in yri from eq.(35), p.8:

ỹri = c̃0 + c̃1ti + c̃2t
2
i (38)

• Calculation of LSE of coefficients:

∂(S2
N )

∂ck
= 0, k = 1, 2, 3 (39)

3 linear equations in 3 unknowns.
• Does eq.(39) produce a minimum or maximum? Determinantal condition:

∣∣∣∣∣
∂2(S2

N )

∂ck∂cj

∣∣∣∣∣ > 0 =⇒ minimum not maximum (40)

2.3 Uncertainty Model

§ Our knowledge:
• The data: y1, . . . , yN
• The LS estimate of the coefficients, c̃, and the corresponding quadratic function, ỹri .
• Contextual info:
◦ Under-prediction by ỹri is very likely: yN+1 may well exceed the LS prediction, ỹrN+1.
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◦ Over-prediction by ỹri is very unlikely: yN+1 will not be less than the LS prediction, ỹrN+1.

§ Info-gap model of asymmetric uncertainty about LSE ỹriN+1:

U(h) = {
yN+1 : 0 ≤ yN+1 − ỹrN+1 ≤ h

}
, h ≥ 0 (41)

• Unbounded family of nested sets.
• No known worst case.
• Depends on the LS coefficients, c̃.

2.4 Robustness: Formulation and Derivation

§ If we knew yN+1 (’66):

S2
N+1(c) =

1

N + 1

N+1∑

i=1

(yi − yri )2 (42)

=
N

N + 1
S2
N (c) +

(
yN+1 − yrN+1

)2

N + 1
(43)

§ Performance requirement. For any coefficient vector, c, we require:

SN+1(c) ≤ Sc (44)

§ Robustness of regression c: Greatest tolerable uncertainty.

ĥ(c, Sc) = max

{
h :

(
max

yN+1∈U(h)
SN+1(c)

)
≤ Sc

}
(45)

§ m(h) is inner maximum in eq.(45):
• Inverse of ĥ(Sc).
• From SN+1 in eq.(43): m(h) occurs when yN+1 equals an extreme value at horizon of uncer-

tainty h: either ỹrN+1 or ỹrN+1 + h:

m1(h) =

√√√√ N

N + 1
S2
N +

(
ỹrN+1 − yrN+1

)2

N + 1
(46)

m2(h) =

√√√√ N

N + 1
S2
N +

(
ỹrN+1 + h− yrN+1

)2

N + 1
(47)

• m(h) is the greater of these two expressions:

m(h) = max [m1(h), m2(h)] (48)

• Recall our economic understanding: actual inflation, yN+1, will exceed the LSE value, ỹrN+1.
• Hence only consider regressions yri for which:

ỹrN+1 ≤ yrN+1 (49)

• Hence eq.(48) becomes:

m(h) =





√
N
N+1S

2
N +

(ỹ
r

N+1−yr
N+1)

2

N+1 if h < 2
(
yrN+1 − ỹrN+1

)

√
N
N+1S

2
N +

(ỹ
r

N+1+h−yr
N+1)

2

N+1 if h ≥ 2
(
yrN+1 − ỹrN+1

) (50)

• Thus m(h) may switch between the two functions and display discontinuity of slope.
• Recall: m(h) is the inverse of the robustness function.
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Figure 12: US inflation
vs. year, 1961–1965, and
least squares fit.

Figure 13: Robustness vs.
critical root mean squared er-
ror for inflation 1961–1965.

2.5 Robustness: Results

§ Least squares fit: fig. 12: Maximal fidelity of quadratic function to the data.

§ Robust of LS fit: fig. 13.
• Trade off: Greater rbs. ≡ greater critical RMS error, Sc.
• Zeroing: No robustness of estimated RMS error, Sc.
•What do the numbers mean?
◦ ĥ = 0.2 at Sc = 0.1:

ỹriN+1 can err by as much as 0.2 (from info-gap model, eq.(41), p.10)
if we require that
S2
N+1 can err by no more than 0.1 (from performance requirement, eq.(44), p.10).

◦ ĥ = 0.7 at Sc = 0.3:
ỹriN+1 can err by as much as 0.7 (from info-gap model, eq.(41), p.10)

if we require that
S2
N+1 can err by no more than 0.3 (from performance requirement, eq.(44), p.10).
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Figure 14: US inflation
vs. year, 1961–1965, and
least squares fit (solid) and
other fit (dash).

Figure 15: Robustness vs.
critical root mean squared er-
ror for inflation 1961–1965 for
least squares fit (solid) and
other fit (dash).

§ Least squares and other fit: fig. 14.
• LS fit: Maximal average fidelity of quadratic function to the data.
• Other fit. Biased fidelity:
◦ Under-estimate, on average, of early data. Note: 1962 is almost exact!
◦ Over-estimate, on average, of late data.
◦ Over-estimate of future wrt historical trend. Maybe 1966 will be exact!

§ Robust of LS and other fit: fig. 15.
• Zeroing: “Other” zeros at greater Sc: it’s nominal MSE is worse.
• Trade off: Both curves. ‘Other’ has greater (infinite) slope at zeroing value:

lower cost of robustness.
• Curve-crossing: preference reversal.
•What do the numbers mean?
◦ At Sc = 0.1:
— ĥother = 0. ĥLS = 0.2. Forecast yN+1 with ỹrN+1(c̃) if Sc = 0.1 is adequate (or required).
◦ At Sc = 0.3:
— ĥother = 0.8. ĥLS = 0.6. Forecast yN+1 with yrN+1(c) if Sc = 0.3 is adequate (or required).
— Curve-crossing: preference reversal.
— Why forecast yN+1 with yrN+1(c) rather than with ỹrN+1(c̃)?
· Fidelity to data and forecast is our measure of performance of a forecaster, eq.(44), p.10.
· yrN+1(c) gives adequate fidelity (Sc = 0.3) over wider range of uncertainty than ỹrN+1(c̃).
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3 Auto-Regression and Data Revision

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-
Macmillan, section 6.2.

3.1 The Problem of Data Revision

§ National statistical bureaus revise economic data over time.
• 1974:
◦ Real US GNP initially thought to have dropped 9.1% at annual rate between 3rd and 4th

quarters.
◦ Largest drop since great depression.
◦ Final estimate, 20 years later: real GNP dropped 1.9% at annual rate.
◦ Not all revisions are this large.
◦ This revision large because of great economic turbulence then.
◦ Precisely in times of economic uncertainty we need accurate data.

• 2007–2009:
◦ Typical revisions of 1 or 2 percentage points.
◦ Table 2.

7q1 7q2 7q3 7q4 8q1
current 1.2 3.2 3.6 2.1 −0.7
previous 0.1 4.8 4.8 −0.2 0.9

8q2 8q3 8q4 9q1 9q2
current 1.5 −2.7 −5.4 −6.4 −1.0
previous 2.8 −0.5 −6.3 −5.5

Table 2: Current and previous estimates of real GDP: percent change from preceding period. 2007q1 to
2009q2. Seasonally adjusted at annual rates. Bureau of Economic Analysis, July 31, 2009.

3.2 Autoregression

§ N scalar data points: y = (y1, . . . , yN )
T .

E.g. inflation data over N sequential years as in fig. 7 on p.8.

§ Regression:
Choose coefficients c = (c1, . . . , cJ)

T of an auto-regression of order J for these data:

yn =
J∑

j=1

cjyn−j (51)

= cT yn−1,n−J (52)

where yn−1,n−J = (yn−1, . . . , yn−J)
T .
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§ Define mean squared error of the auto-regression (AR) of the data:

S2(c) =
1

N − J
N∑

n=J+1

(
yn − c′yn−1,n−J

)2 (53)

§ Our system model is the RMS error, S(c).

§ Performance requirement:
S(c) ≤ Sc (54)

§ The mean squared error can be expressed more compactly as:

S2(c) =
1

N − J y
′V y (55)

where V is defined as follows.
• en denotes the nth standard basis vector in <N : the column N -vector with a 1 in the nth location

and 0’s elsewhere.
• Now the mean squared error can be written:

S2(c) =
1

N − J
N∑

n=J+1


eTny −

J∑

j=1

cje
T
n−jy



2

(56)

=
1

N − J
N∑

n=J+1




eTn −

J∑

j=1

cje
T
n−j




︸ ︷︷ ︸
ζTn

y



2

(57)

=
1

N − J
N∑

n=J+1

yT ζnζ
T
n y (58)

=
1

N − J y
T




N∑

n=J+1

ζnζ
T
n




︸ ︷︷ ︸
V

y (59)

=
1

N − J y
TV y (60)

This is eq.(55), with N ×N matrix V from eq.(59) and N -vectors ζn from eq.(57).
• V depends on the regression coefficients c but not on the data.

§ The AR coefficients that minimize the mean squared error are found by solving:

∂S2

∂c
= 0 (61)

• Differentiating eq.(53) and rearranging one finds:

N∑

n=J+1

ynyn−1,n−J

︸ ︷︷ ︸
z

=




N∑

n=J+1

yn−1,n−J y
′
n−1,n−J




︸ ︷︷ ︸
Y

c (62)

which defines the J-vector z and the J × J matrix Y .
• The least squares (LS) auto-regression coefficients are:

c̃ = Y −1z (63)

If the inverse matrix does not exist then a generalized inverse needs to be used.
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3.3 Uncertainty Model and Robustness Function

§ Best estimate of the data: ỹ = (ỹ1, . . . , ỹN )
T .

E.g. ỹ might be current estimates of percent change in real GDP shown in table 2, p.13.

§ Info-gap model for asymmetric information:

U(h) = {y : ỹn − wn1h ≤ yn ≤ ỹn + wn2h, n = 1, . . . , N} , h ≥ 0 (64)

• Uncertainty weights, wn1 and wn2, are non-negative.
• If ỹn is certain, then wn1 = 0 = wn2.
• If ỹn is believed to be an underestimate then wn1 = 0 and wn2 = 1.
• If ỹn is believed to be an over estimate then wn1 = 1 and wn2 = 0.
• If the uncertainty is symmetric then uncertainty weights wn1 = wn2.

§ Robustness function, definition:

ĥ(c, Sc) = max

{
h :

(
max
y∈U(h)

S(c)

)
≤ Sc

}
(65)

3.4 Policy Exploration

§ Example is based on 2nd-order auto-regressions, so J = 2 in eq.(51), p.13.
We use the percent change in the US GDP for 2007q1–2009q2 in table 2, p.13.

3.4.1 Symmetric Uncertainty
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Figure 16: Current estimates of
US real GDP change vs. quar-
ter, and least squares auto-
regression.

Figure 17: Robustness vs. crit-
ical RMS error of least squares
auto-regression. Symmetric un-
certainty.

§ The data.
• Fig. 16: GDP data, table 2, p.13, and 2nd-order least-squares auto-regression, c̃ from eq.(63).
• LS regression coefficients are c̃ = (0.9139,−0.4647)T .
• The RMS error of this regression is S(c̃) = 2.49, so the AR misses the data, on average, by

about 2.5 percentage points of GDP.
• This rather large error occurs mostly in last 5 quarters: data at ’08q2 and ’09q2 deviate from

trend.
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• Great uncertainty; no information on direction or magnitude of data revision.
• Use info-gap model of eq.(64) with wn1 = wn2 = 1 for n = 1, . . . , N .

§ Robustness curve for LS AR c̃ with symmetric uncertainty, fig. 17.
• Zeroing at S(c̃) = 2.49.
• Trade off.
• ĥ(Sc = 4) = 0.88: RMS error no larger than 4% is guaranteed with robustness of 0.88:
revisions as large as 0.88 percentage points can occur and the RMS error will not exceed 4%.
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(0.91,−0.46)
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Figure 18: Robustness vs. criti-
cal RMS error with least squares
(solid) and other (dash) auto-
regression. Symmetric uncer-
tainty.

Figure 19: Robustness vs. criti-
cal RMS error with least squares
(solid) and other (dash) auto-
regression. Symmetric uncer-
tainty.

§ Robustness curves for non-LS AR with symmetric uncertainty, figs. 18 and 19.
• LS robustness curve (solid) reproduced from fig. 17.
• LS robustness curve zeros to left of non-LS by definition of least squares.
• Non-LS robustness curves steeper: lower cost of robustness.
• Curve crossing and preference reversal.
• Two foci of uncertainty:
◦ Statistical: seek small RMS.
◦ Info-gap: seek large robustness.

3.4.2 Asymmetric Uncertainty

§ Uncertainty and contextual information:
• Data in fig. 16, p.15.
• Current estimates at 2008q2 and 2009q2 are over-estimates and will be revised down.
• Use info-gap model of eq.(64). Choose uncertainty weights:
◦ w6,2 = w10,2 = 0: 6th and 10th estimates cannot go up.
◦ w6,1 = w10,1 = 1: 6th and 10th estimates can go down.
◦ wnj = 1 for all other n and j (all other estimates can go either up or down).
• In summary:

w2 = [1 1 1 1 1 0 1 1 1 0] (66)

w1 = [1 1 1 1 1 1 1 1 1 1] (67)
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Figure 20: Robustness vs. crit-
ical RMS error for least squares
regression with symmetric and
asymmetric uncertainty.

Figure 21: Robustness vs. criti-
cal RMS error with least squares
(solid) and other (dash, dot-
dash) regressions. Asymmetric
uncertainty.

§ LS auto-regression, fig. 20:
• c̃ does not depend on the info-gap model, so c̃ is the same as before: c̃ = (0.9139,−0.4647)T .
• Furthermore, the RMS error of the LS regression same as before: S(c̃) = 2.49.
• However, the robustness of c̃ does depend on the info-gap model, fig. 20.
◦ Zeroing: both curves reach Sc axis at S(c̃).
◦ Asymmetric robustness curve higher due to greater info in asymmetric info-gap model.

§ Non-LS auto-regression, fig. 21:
• Solid curve is LS regression: the “Asym.” curve from fig. 20.
• Curve-crossing with non-LS regressions.
• Large robustness gain by the non-LS over LS regressions.
• Compare with figs. 18 and 19:
◦ Robustness gain is greater in current case.
◦ Added asymmetric information enhances robustness of LS regression.
◦ Further enhances the robustness of these non-LS regressions.


