Solution to Problem 1, Compound interest, (p.3). The basic relation is:

$$F = (1+i)^N P \tag{94}$$

In our case, i = 0.12, N = 6 and P = 1,500. Thus F = \$2,960.73.

Solution to Problem 2, Compound interest, (p.3). See table 4, which explains that:

200 interest is paid each year for years 1–4.

100 interest is paid each year for years 5–8.

\$1,200 is the total interest paid.

Year	Amount owed	Interest	Payment
	at beginning	accrued	at end
	of year	for year	of year
1	2,000	200	200
2	2,000	200	200
3	2,000	200	200
4	2,000	200	1,200
5	1,000	100	100
6	1,000	100	100
7	1,000	100	100
8	1,000	100	1,100
Total:		1,200	3,200

Table 4: Solution to problem 2.

54

Solution to Problem 3, Compound interest, (p.3). We can immediately obtain the answer from the following relation:

$$F = (1+i)^N P = 1.1^8 \times 2000 = 4287.17$$
(95)

However, it is interesting to compare the details of the result, in comparison to table 4 from problem 2. See table 5.

• 2nd column (amount owed at beginning of each year):

Compound interest on principal: row $n = 1.1^{n-1} \times \text{ row 1}$.

• 3rd column (interest accrued for year):

3rd column = $0.1 \times 2nd$ column.

• Thus the total interest paid is \$2,287.17, which is much greater than in problem 2 because of (1) compounding (2) deferred repayment of all principal to year 8.

Year	Amount owed	Interest	Payment
	at beginning	accrued	at end
	of year	for year	of year
1	2,000	200	0
2	2,200	220	0
3	2,420	242	0
4	2,662	266.20	0
5	2,928.20	292.82	0
6	3,221.02	322.10	0
7	3,543.12	354.31	0
8	3,897.43	389.74	4,287.17
Total:		2,287.17	4,287.17

Table 5: Solution to problem 3.

Solution to Problem 4, Equivalent annual payment, (p.3). The basic relation is:

$$A = \frac{i(1+i)^N}{(1+i)^N - 1}P$$
(96)

In our case: i = 0.1, N = 5, P = 20,000. Thus:

$$A = 0.263797 \times 20,000 = \$5,275.95 \tag{97}$$

56

Solution to Problem 5, Compound interest, (p.3). See table 6.

 2nd column (amount owed at beginning of each year): Remaining principal minus last year's payment of \$4,000.

• 3rd column (interest accrued for year):

3rd column = 0.1 \times 2nd column.

• Thus the total interest paid is \$6,000.

• The total payment in problem 4 is $5 \times 5,275.95 = \$26,379.75$. Thus the interest paid in problem 4 is \$6,379.75.

• The interest paid in problem 4 is greater than in problem 5 because of repayment of principal during the loan in problem 5.

Year	Amount owed	Interest	Payment
	at beginning	accrued	at end
	of year	for year	of year
1	20,000	2,000	6,000
2	16,000	1,600	5,600
3	12,000	1,200	5,200
4	8,000	800	4,800
5	4,000	400	4,400
Total:		6,000	26,000

Table 6: Solution to problem 5.