Solution to Problem 1, Compound interest, (p.3). The basic relation is:

$$
\begin{equation*}
F=(1+i)^{N} P \tag{94}
\end{equation*}
$$

In our case, $i=0.12, N=6$ and $P=1,500$. Thus $F=\$ 2,960.73$.
Solution to Problem 2, Compound interest, (p.3). See table 4, which explains that:
$\$ 200$ interest is paid each year for years 1-4.
$\$ 100$ interest is paid each year for years 5-8.
$\$ 1,200$ is the total interest paid.

Year	Amount owed at beginning of year	Interest accrued for year	Payment at end of year
1	2,000	200	200
2	2,000	200	200
3	2,000	200	200
4	2,000	200	1,200
5	1,000	100	100
6	1,000	100	100
7	1,000	100	100
8	1,000	100	1,100
Total:		1,200	3,200

Table 4: Solution to problem 2.

Solution to Problem 3, Compound interest, (p.3). We can immediately obtain the answer from the following relation:

$$
\begin{equation*}
F=(1+i)^{N} P=1.1^{8} \times 2000=4287.17 \tag{95}
\end{equation*}
$$

However, it is interesting to compare the details of the result, in comparison to table 4 from problem 2. See table 5.

- 2nd column (amount owed at beginning of each year):

Compound interest on principal: row $n=1.1^{n-1} \times$ row 1 .

- 3rd column (interest accrued for year):

3 rd column $=0.1 \times 2$ nd column.

- Thus the total interest paid is $\$ 2,287.17$, which is much greater than in problem 2 because of (1) compounding (2) deferred repayment of all principal to year 8.

Year	Amount owed at beginning of year	Interest accrued for year	Payment at end of year
1	2,000	200	0
2	2,200	220	0
3	2,420	242	0
4	2,662	266.20	0
5	$2,928.20$	292.82	0
6	$3,221.02$	322.10	0
7	$3,543.12$	354.31	0
8	$3,897.43$	389.74	$4,287.17$
Total:		$2,287.17$	$4,287.17$

Table 5: Solution to problem 3.
Solution to Problem 4, Equivalent annual payment, (p.3). The basic relation is:

$$
\begin{equation*}
A=\frac{i(1+i)^{N}}{(1+i)^{N}-1} P \tag{96}
\end{equation*}
$$

In our case: $i=0.1, N=5, P=20,000$. Thus:

$$
\begin{equation*}
A=0.263797 \times 20,000=\$ 5,275.95 \tag{97}
\end{equation*}
$$

Solution to Problem 5, Compound interest, (p.3). See table 6.

- 2nd column (amount owed at beginning of each year):

Remaining principal minus last year's payment of $\$ 4,000$.

- 3rd column (interest accrued for year):

3rd column $=0.1 \times 2$ nd column.

- Thus the total interest paid is $\$ 6,000$.
- The total payment in problem 4 is $5 \times 5,275.95=\$ 26,379.75$. Thus the interest paid in problem 4 is $\$ 6,379.75$.
- The interest paid in problem 4 is greater than in problem 5 because of repayment of principal during the loan in problem 5.

Year	Amount owed at beginning of year	Interest accrued for year	Payment at end of year
1	20,000	2,000	6,000
2	16,000	1,600	5,600
3	12,000	1,200	5,200
4	8,000	800	4,800
5	4,000	400	4,400
Total:		6,000	26,000

Table 6: Solution to problem 5.

