41. Present worth of yearly profit. (Based on exam 28.5.2018.) (p.116)
(a) The profit at the end of year $n$ is $R_{n}$, where $R_{1}=\$ 2,500, R_{2}=\$ 3,500, R_{3}=\$ 5,000$. The discount rate is $i=0.09$. What is the present worth of the total income stream?
(b) The profit at the end of year $n$ is $R_{n}$, where $R_{1}=\$ 2,500, R_{2}=\$ 3,500, R_{3}=\$ 5,000$. At the end of each year you will invest that year's profit, $R_{n}$, with yearly rate of return of $i_{\mathrm{a}}=$ 0.15. What is the total accumulated sum at the end of year 3 ? What is the present worth of that sum using a discount rate of $i=0.09$ ?
(c) The profit at the end of year $n$ is $R_{n}$, where the estimated values of these profits are $\widetilde{R}_{n}$ for $n=1,2,3$. The uncertainty in these estimates is given by this info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{R:\left|\frac{R_{n}-\widetilde{R}_{n}}{\widetilde{R}_{n}}\right| \leq h, \quad n=1,2,3\right\}, \quad h \geq 0 \tag{36}
\end{equation*}
$$

The discount rate is $i$. You require that the present worth be no less than the critical value $\mathrm{PW}_{\mathrm{c}}$. Derive an explicit algebraic expression for the robustness.
(d) The return on an investment is a random variable, $R$, in the interval [ $R_{1}, R_{2}$ ]. The investment is a success if the return exceeds the critical value $R_{\mathrm{c}}$. The probability of success is:

$$
P_{\mathrm{s}}\left(R_{\mathrm{c}}\right)=\left\{\begin{array}{cl}
0 & \text { if } R_{\mathrm{c}}>R_{2}  \tag{37}\\
\frac{R_{2}-R_{\mathrm{c}}}{R_{2}-R_{1}}, & \text { if } R_{1} \leq R_{\mathrm{c}} \leq R_{2} \\
1 & R_{\mathrm{c}}<R_{1}
\end{array}\right.
$$

However, the value of the critical return, $R_{\mathrm{c}}$, is uncertain, as expressed by this info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{R_{\mathrm{c}}:\left|\frac{R_{\mathrm{c}}-\widetilde{R}_{\mathrm{C}}}{\widetilde{R}_{\mathrm{c}}}\right| \leq h\right\}, \quad h \geq 0 \tag{38}
\end{equation*}
$$

You require that the probability of success be no less than the critical value $P_{\mathrm{c}}$. Derive an explicit algebraic expression for the robustness. Assume that $R_{1} \leq \widetilde{R}_{\mathrm{c}} \leq R_{2}$.
(e) (Variation on part 41a) The profit at the end of year $n$ is $R_{n}$, where $R_{1}=\$ 5000, R_{2}=$ $\$ 3,500, R_{3}=\$ 2,500$. The discount rate is $i=0.05$. What is the present worth of the total income stream?
(f) (Variation of part 41b) The profit at the end of year $n$ is $R_{n}$, where $R_{1}=\$ 5,000, R_{2}=$ $\$ 3,500, R_{3}=\$ 2,500$. At the end of each year you will invest that year's profit, $R_{n}$, with yearly rate of return of $i_{\mathrm{a}}=0.1$. What is the total accumulated sum at the end of year 3 ? What is the present worth of that sum using a discount rate of $i=0.04$ ?
(g) (Variation on part 41c) The profit at the end of year $n$ is $R_{n}$, where the estimated values of these profits are $\widetilde{R}_{n}$ for $n=1,2,3$. The uncertainty in these estimates is given by this info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{R:\left|\frac{R_{n}-\widetilde{R}_{n}}{w}\right| \leq h, \quad n=1,2,3\right\}, \quad h \geq 0 \tag{39}
\end{equation*}
$$

where $w$ is a known positive constant. The discount rate is $i$. You require that the present worth be no less than the critical value $\mathrm{PW}_{\mathrm{c}}$. Derive an explicit algebraic expression for the robustness.
(h) (Variation of part 41d) The return on an investment is a random variable, $R$, in the interval [ $R_{1}, R_{2}$ ]. The investment is a success if the return exceeds the critical value $R_{\mathrm{c}}$. The probability of success is:

$$
P_{\mathrm{s}}\left(R_{\mathrm{c}}\right)=\left\{\begin{array}{cl}
0 & \text { if } R_{\mathrm{c}}>R_{2}  \tag{40}\\
\frac{R_{2}-R_{\mathrm{c}}}{R_{2}-R_{1}}, & \text { if } R_{1} \leq R_{\mathrm{c}} \leq R_{2} \\
1 & R_{\mathrm{c}}<R_{1}
\end{array}\right.
$$

However, the value of the critical return, $R_{\mathrm{c}}$, is uncertain, as expressed by this info-gap model:

$$
\begin{equation*}
\mathcal{U}(h)=\left\{R_{\mathrm{c}}:\left|\frac{R_{\mathrm{c}}-\widetilde{R}_{\mathrm{c}}}{w}\right| \leq h\right\}, \quad h \geq 0 \tag{41}
\end{equation*}
$$

where $w$ is a known positive constant. You require that the probability of success be no less than the critical value $P_{\mathrm{c}}$. Derive an explicit algebraic expression for the robustness. Assume that $R_{1} \leq \widetilde{R}_{\mathrm{c}} \leq R_{2}$.

Solution to problem 41, Present worth of yearly profit (p.38).
(41a) The present worth is:

$$
\begin{equation*}
\mathrm{PW}=\sum_{n=1}^{N}(1+i)^{-n} R_{n}=1.09^{-1} 2,500+1.09^{-2} 3,500+1.09^{-3} 5,000=\$ 9,100.4 \tag{534}
\end{equation*}
$$

(41b) The total accumulated value at the end of year 3 is:

$$
\begin{equation*}
V=\sum_{n=1}^{N}\left(1+i_{\mathrm{a}}\right)^{N-n} R_{n}=1.15^{2} 2,500+1.15^{1} 3,500+1.15^{0} 5,000=\$ 12,331 \tag{535}
\end{equation*}
$$

The present worth of this value is:

$$
\begin{equation*}
\operatorname{PW}(V)=(1+i)^{-3} V=1.09^{-3} 12,331=\$ 9,521.8 \tag{536}
\end{equation*}
$$

(41c) The present worth of the profit stream is:

$$
\begin{equation*}
\operatorname{PW}(R)=\sum_{n=1}^{N}(1+i)^{-n} R_{n} \tag{537}
\end{equation*}
$$

The definition of the robustness is:

$$
\begin{equation*}
\widehat{h}=\max \left\{h:\left(\min _{R \in \mathcal{U}(h)} \mathrm{PW}(R)\right) \geq \mathrm{PW}_{\mathrm{c}}\right\} \tag{538}
\end{equation*}
$$

Let $m(h)$ denote the inner minimum, which occurs when each profit is as low as possible at horizon of uncertainty $h$ :

$$
\begin{equation*}
m(h)=\sum_{n=1}^{N}(1+i)^{-n}(1-h) \widetilde{R}_{n}=(1-h) \mathrm{PW}(\widetilde{R}) \tag{539}
\end{equation*}
$$

Equating this to the critical value, $\mathrm{PW}_{\mathrm{c}}$, and solving for $h$ yields the robustness:

$$
\begin{equation*}
\widehat{h}=1-\frac{\mathrm{PW}_{\mathrm{c}}}{\operatorname{PW}(\widetilde{R})} \tag{540}
\end{equation*}
$$

or zero if this is negative.
(41d) The definition of the robustness is:

$$
\begin{equation*}
\widehat{h}=\max \left\{h:\left(\min _{R_{\mathrm{c}} \in \mathcal{U}(h)} P_{\mathrm{s}}\left(R_{\mathrm{c}}\right)\right) \geq P_{\mathrm{c}}\right\} \tag{541}
\end{equation*}
$$

Let $m(h)$ denote the inner minimum, which occurs when the critical value, $R_{\mathrm{c}}$, is as large as possible at horizon of uncertainty $h$ :

$$
m(h)=\left\{\begin{array}{cl}
\frac{R_{2}-(1+h) \widetilde{R}_{\mathrm{c}}}{R_{2}-R_{1}} & \text { if } \left.(1+h) \widetilde{R}_{\mathrm{c}} \leq R_{2} \quad \text { (equiv: } h \leq \frac{R_{2}}{\widetilde{R}_{\mathrm{c}}}-1\right)  \tag{542}\\
0 & \text { else }
\end{array}\right.
$$

Equating this to the critical value, $P_{\mathrm{c}}$, and solving for $h$ yields the robustness:

$$
\begin{equation*}
\widehat{h}=\frac{R_{2}-\left(R_{2}-R_{1}\right) P_{\mathrm{c}}}{\widetilde{R}_{\mathrm{c}}}-1 \tag{543}
\end{equation*}
$$

or zero if this is negative. Note that $\hat{h} \leq \frac{R_{2}}{\widetilde{R}_{\mathrm{c}}}-1$.
(41e) The present worth is:

$$
\begin{equation*}
\mathrm{PW}=\sum_{n=1}^{N}(1+i)^{-n} R_{n}=1.05^{-1} 5,000+1.05^{-2} 3,500+1.05^{-3} 2,500=\$ 10,096 \tag{544}
\end{equation*}
$$

(41f) The total accumulated value at the end of year 3 is:

$$
\begin{equation*}
V=\sum_{n=1}^{N}\left(1+i_{\mathrm{a}}\right)^{N-n} R_{n}=1.1^{2} 5,000+1.1^{1} 3,500+1.1^{0} 2,500=\$ 12,400 \tag{545}
\end{equation*}
$$

The present worth of this value is:

$$
\begin{equation*}
\operatorname{PW}(V)=(1+i)^{-3} V=1.04^{-3} 12,400=\$ 11,024 \tag{546}
\end{equation*}
$$

$(41 \mathrm{~g})$ The present worth of the profit stream is:

$$
\begin{equation*}
\operatorname{PW}(R)=\sum_{n=1}^{N}(1+i)^{-n} R_{n} \tag{547}
\end{equation*}
$$

The definition of the robustness is:

$$
\begin{equation*}
\widehat{h}=\max \left\{h:\left(\min _{R \in \mathcal{U}(h)} \mathrm{PW}(R)\right) \geq \mathrm{PW}_{\mathrm{c}}\right\} \tag{548}
\end{equation*}
$$

Let $m(h)$ denote the inner minimum, which occurs when each profit is as low as possible at horizon of uncertainty $h$ :

$$
\begin{equation*}
m(h)=\sum_{n=1}^{N}(1+i)^{-n}\left(\widetilde{R}_{n}-w h\right)=\mathrm{PW}(\widetilde{R})-h \mathrm{PW}(w) \tag{549}
\end{equation*}
$$

Equating this to the critical value, $\mathrm{PW}_{\mathrm{c}}$, and solving for $h$ yields the robustness:

$$
\begin{equation*}
\widehat{h}=\frac{\mathrm{PW}(\widetilde{R})-\mathrm{PW}_{\mathrm{c}}}{\mathrm{PW}(w)} \tag{550}
\end{equation*}
$$

or zero if this is negative.
(41h) The definition of the robustness is:

$$
\begin{equation*}
\widehat{h}=\max \left\{h:\left(\min _{R_{\mathrm{c}} \in \mathcal{U}(h)} P_{\mathrm{s}}\left(R_{\mathrm{c}}\right)\right) \geq P_{\mathrm{c}}\right\} \tag{551}
\end{equation*}
$$

Let $m(h)$ denote the inner minimum, which occurs when the critical value, $R_{\mathrm{c}}$, is as large as possible at horizon of uncertainty $h$ :

$$
m(h)=\left\{\begin{array}{cl}
\frac{R_{2}-\left(\widetilde{R}_{\mathrm{c}}+w h\right)}{R_{2}-R_{1}} & \text { if } \widetilde{R}_{\mathrm{c}}+w h \leq R_{2}\left(\text { equiv: } h \leq \frac{R_{2}-\widetilde{R}_{\mathrm{c}}}{w}\right)  \tag{552}\\
0 & \text { else }
\end{array}\right.
$$

Equating this to the critical value, $P_{\mathrm{c}}$, and solving for $h$ yields the robustness:

$$
\begin{equation*}
\widehat{h}=\frac{R_{2}-\widetilde{R}_{\mathrm{c}}-\left(R_{2}-R_{1}\right) P_{\mathrm{c}}}{w} \tag{553}
\end{equation*}
$$

or zero if this is negative. Note that $\widehat{h} \leq \frac{R_{2}-\widetilde{R}_{\mathrm{c}}}{w}$.

