Lecture Notes on

Forecasting
Yakov Ben-Haim

Former Yitzhak Moda’i Chair in Technology and Economics

Faculty of Mechanical Engineering
Technion — Israel Institute of Technology
Haifa 32000 Israel
yakov@technion.ac.il

http: //info-gap.com  http://www.technion.ac.il/yakov

Source material:!
e Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Chapter 6: Estimation
and Forecasting, Palgrave-Macmillan.
e Yakov Ben-Haim, 2009, Info-gap forecasting and the advantage of sub-optimal models, Furopean Jour-
nal of Operational Research, 197: 203-213. Link to pre-print at:
http: //info-gap.com/content.php?id=22

A Note to the Student: These lecture notes are not a substitute for the thorough study of books. These
notes are no more than an aid in following the lectures.

Contents
1 1-D Dynamic System: European Central Bank Overnight Interest Rates 2
1.1 The Data and the Questions . . . . . . . . . . . . . . . . . . e 2
1.2 1-Step Dynamics and Robustness . . . . . . . . .. .. Lo o 3
1.3  Multi-Step Dynamics and Robustness . . . . . . . .. ... Lo oo 5
2 Regression Prediction of US Inflation Data 8
2.1 Data . . . . 8
2.2 System Model: Mean Squared Error . . . . . . . . . . ... 9
2.3 Uncertainty Model . . . . . . . . . e 9
2.4 Robustness: Formulation and Derivation . . . . . . . . . .. ... 0000 10
2.5 Robustness: Results . . . . . . . .. 11
3 Auto-Regression and Data Revision 13
3.1 The Problem of Data Revision . . . . . . . .. .. . . ... .. . 13
3.2 Autoregression . . .. .. 13
3.3 Uncertainty Model and Robustness Function . . . . ... ... ... ... ... ...... 15
3.4 Policy Exploration . . . . . . . . .. e 15
3.4.1 Symmetric Uncertainty . . . . . . . . . . 15
3.4.2 Asymmetric Uncertainty . . . . . . . . . . ..o 16

\lectures\Econ-Dec-Mak\ forecasting001.tex 2.7.2022 (© Yakov Ben-Haim 2023.
! Additional material in the file: Yakov Ben-Haim, Lecture notes on info-gap
\lectures\risk\lectures\estim02.pdf.

estimation

and forecasting,



forecasting001.tex FORECASTING 2

1 1-D Dynamic System:
European Central Bank Overnight Interest Rates

1.1 The Data and the Questions

Date Interest | Implied
rate A

1 Jan 1999 4.50
9 Apr 1999 3.50 0.778
5 Nov 1999 4.00 1.143
4 Feb 2000 4.25 1.063
17 Mar 2000 4.50 1.059
28 Apr 2000 4.75 1.056
9 Jun 2000 5.25 1.105
28 Jun 2000 5.25 1.000
1 Sep 2000 5.50 1.048
6 Oct 2000 5.75 1.045
11 May 2001 5.50 0.957
31 Aug 2001 5.25 0.955

Table 1: Interest rates for overnight loans at the European Central Bank (marginal lending facility). Source:
http://www.ecb.int/stats/monetary /rates/html/index.en.html

e

O1 Jan 1999 to 31 Aug 2001

ECB Interest Rate
w

Figure 1: ECB Interest Rates

§ ECB overnight interest rates: table 1.
e First loans: 1999.
e Data through August 2001.
e 9 June 2000-31August 2001: p = 5.4%, o = 0.19%.
e Typical change: 25 basis points.
e Largest change: 100 basis points.

§ El-Qaeda attacks in US: 11 Sept 2001.
e Predict next interest rate on 9/12/2001, (1 day after 9/11).
e Asymmetric uncertainty: rate will go down (Why?), but by how much?

§ Questions:
e How to forecast the rate in light of the great uncertainty?

e How to assess confidence in the forecast?
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1.2 1-Step Dynamics and Robustness

§ Uncertain historical model of dynamical variable y,,, e.g. interest rate:
Y1 = Ay, Yo > 0, known, A; uncertain
§ Info-gap model. Asymmetric uncertainty:
U, A) ={M: 1=mA< <A}, h>0

e \: known and positive estimate transition coefficient.

e )\;: unknown true transition coefficient anticipated to be no greater, probably less, than A

§ Slope-adjusted forecasting model. We must choose the “slope” ¢:

yi = lyo
§ Performance requirement:
e Absolute error:
e =yt — il = [(€ = A)yol
e Performance requirement:

e<ee

§ Robustness:
e Definition:

h(t,ec) = h: M) ) <e
(4, ec) max{ (Alnggz(h)e( 1)) <e }

e m(h) is inner maximum in eq.(6): inverse of h(e).
e We will consider a special case:

<A

e Recall: yg > 0 and known.
e m(h) occurs for an extremal value of A; at horizon of uncertainty h: either A or (1 — h)A.
e m(h) is the greater of the following:

ml(h) = ‘S\—Z‘yo
ma(h) = |¢=(1=m)A|y

e Clearly m(h) > my(h) for small h because ¢ < X. To find the transition:

v

X—2 0—(1—h)X
¢:>2(X—£) > hA
Q(X—e)

A

<— h

IN

e Hence: ~
m(h) = (A=) w, ifth(i;E)
(g (1= hﬁ) Yo, else
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Figure 2: Robustness curve
h(l,ec), eq.(14).

§ Robustness function: equate m(h) to €. and solve for A to find the robustness. One finds (fig. 2):

0, ife. < (X—E) Yo
A A (U Y
T, else

e Trade off: robustness & up (good) as critical error e, up (not good).
e Zeroing: No robustness at estimated error.
e Discontinuous robustness curve for £ < \.

e Crossing robustness curves, fig. 3: preference reversal.
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Figure 3: Robustness vs normalized forecast error. A= 1, yr = 5.25.

§ Robustness curves for 3 slope-adjusted models, fig. 3:
e / =1.0 = 0% robustness at 0% error.
e { =0.95 = 10% robustness at 5% error (more robust than ¢ = 1.0).
o / =0.9 = 20% robustness at 10% error (more robust than ¢ = 0.95).

§ Forecast:
e Model used: ¢ = 0.9 = 20% robustness at 10% error.
e Forecast: yp,; = 0.9yr = 4.725.
e Outcome:
o yr4+1 = 4.75 on 18.9.2001.
o —0.5% forecast error.
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1.3 Multi-Step Dynamics and Robustness
§ Uncertain historical model:
Y1 = M1y, t=0,1,2..., yo >0, known, M;11 uncertain (15)
Thus: ,
w=w [N, t=12,... (16)
j=1
§ Info-gap model. Asymmetric uncertainty:
UhA) ={N: A=WA<N <A t=1,2,...}, h>0 (17)
Assume \ > 0.
§ Slope-adjusted forecasting model. We must choose the ‘slope’ £:
Y = tyf (18)
Thus:
i = 'yo (19)
§ Performance requirement:
e Absolute error:
t
ee = ly; —uel = € =TT Ai|wo (20)
j=1
e Performance requirement:
et < €¢ (21)
§ Robustness:
e Definition:
h(l,ec) = max {h : (}\rggm(}}cl) st(A)> < 6(:} (22)
e m(h) is inner maximum in eq.(22): inverse of hy(ec).
e Special case:
(<) (23)
e Recall: yo > 0.
o If h <1 then my(h) occurs for extremal values of A1, ..., \; at horizon of uncertainty h: all are either
Xor (1—h)\
e my(h), for h <1, is the greater of the following:
~t
mea(h) = (X =)y (24)
t
mea(h) > 6= ] = h)A| o (25)
j=1
= | — @ - mX o (26)
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e Clearly my 1(h) > my2(h) for small h. To find the transition:

Nt > ot (1— )t

~t
A — 20
- ~t Z _(l_h)t
A
20t — )
—a-n > XA
A
PR 1/t
<~—1—-h > (2£~t)\)
A

e Hence, for h < 1:

g5 1/t
@ﬂwﬁm, ith<1-— 3{;1
A

hs

mt(h) =

(ﬁ—u—mﬁﬁ%, if hy < h <1

which defines the constant, hg, at which my(h) switches.
e Equate my(h) to e. and solve for h to find the robustness. One finds:

0, if e. < (Xt — ﬁt) Yo
Et(fﬁc) = t 1/t ~
L— <€ y~0t_€c> , dif (/\t—et) Yo < ec < l'yo
A Yo
Note that eq.(33) is valid only for values of ¢, for which h; < 1.
e This robustness function, like eq.(14), p.4, shows:
o Discontinuity.
o Curve-crossing with hy(X, ).

1 1 1
ooA=1 w=1 k=1 ool A=1 w=1 k=2 ool A=1 yo=1k=3
0.8 gt 0.8, T 0.8,
0.7 =% =1 0.7 =08 0.7 £=085
g £=09
B AR X B ) 1=1 09
hos £=0.95 hos| hos i
0.4 0.4 £=095 0.4
0.3 0.3 0.3
£=0.95
0.2 0.2 0.2
0.1 : 0.1 : 0.1
00 0‘.2 0‘.4 ~ 0‘.6 0‘.8 1 00 0‘.2 0‘.4 ~ 0‘.6 0‘.8 1 00 0‘.2 0‘.4 ~ 0‘.6 0‘.8 1
/Ao /Ao e/ Ayo
Figure 4: Robustness Figure 5: Robustness Figure 6: Robustness
curves, eq.(33), t = 1. curves, eq.(33), t = 2. curves, eq.(33), t = 3.

§ Results: figs. 4-6:

e Curve crossing.
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e Discontinuity of robustness curve occurs at larger ¢ for longer forecast (higher t.)
e Robustness curves shift right (bad) and fall (bad) as t increases. E.g.:

hi—s(ec = 04,0 = 0.85) = 0.4 < hy—g(cc =0.4,0=0.85) = 0.43 < hy_1(cc = 0.4,¢ = 0.85) = 0.55 (34)

e Cost of robustness decreases (good) as ¢ increases.
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2 Regression Prediction of US Inflation Data

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan,

section 6.1.
2.1 Data
1.7 3 6
. 16 1] . f .
© < T 5
o 15 0 25 o
B3 1.4 s 3 4
c c c
O 13 o 2 o
ks 1.2 & 8-
<l f= €
= =15 =
o - o o2
o O O
hL: 18 [
0'1%61 1962 1963 1964 1965 1961 1962 1963 1964 1965 1966 1961 1963 1965 1967 1969
Year Year Year

Figure T: US inflation Figure 8: US inflation Figure 9: US inflation
vs. year, 1961-1965. vs. year, 1961-1966. vs. year, 1961-1970.
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Figure 10: US inflation
vs. year, 1961-1993.

§ US inflation:
e '61-’65: Linear?
e '61-’66: Quadratic?
e '61-70: Piece-wise linear?
e '61-'93: A mess?

§ Modeling and predicting US inflation:
e ’61-'65 Linear? Quadratic?
e Use the '61-'65 model for predicting ’66:

Yl = co + ety + cat?
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Figure 11: US inflation
vs. year, 1961-1965.

2.2 System Model: Mean Squared Error

§ System model: Mean Squared Error (MSE).
For any vector of coefficients, ¢, the MSE is:

1 Y )
SM@ZN'(w—w

=1

N =5 for '61-'65. yi, ...,yn are data. y; is from eq.(35), p.8.

§ Least-squares estimate (LSE):
e Definition:
¢ = argmin S%(c)
(&
e Meaning: ¢ is optimal estimate w.r.t. historical data.

e Question: Is ¢ optimal wrt future data?
e LS regression: ¢ in y; from eq.(35), p.8:

U5 = ¢ + 1ty + at?

e Calculation of LSE of coefficients:

a(S%)
8ck

=0, k=1,2,3

3 linear equations in 3 unknowns.
e Does eq.(39) produce a minimum or maximum? Determinantal condition:

0%(S%)
8Ck66j

> (0 — minimum not maximum

2.3 Uncertainty Model

§ Our knowledge:
e The data: 1, ...,yn
e The LS estimate of the coefficients, ¢, and the corresponding quadratic function, y;.

e Contextual info:
o Under-prediction by y; is very likely: yny1 may well exceed the LS prediction, ¥y, .

(36)

(38)

(40)
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o Over-prediction by 7; is very unlikely: yx1 will not be less than the LS prediction, yjy, .

§ Info-gap model of asymmetric uncertainty about LSE y; ;:
Uh) ={yn+1: 0<yni1 =Yy <hp, h>0 (41)

e Unbounded family of nested sets.
e No known worst case.

e Depends on the LS coefficients, c.

2.4 Robustness: Formulation and Derivation

§ If we knew yn41 (’66):

, 1 Nl ,
IS — St 42
N+1(6) N1 ; (yi — i) (42)
_ N o 0+ (yNJrl - yfv+1)2 (43)
N+17Y N +1
§ Performance requirement. For any coefficient vector, ¢, we require:
SN+1<C) S SC (44)

§ Robustness of regression c: Greatest tolerable uncertainty.
h(c, Se) = max{ h : max  Syii(c) | < Se (45)
ynN4+1€U(R)
§ m(h) is inner maximum in eq.(45):
e Inverse of h(S,).
e From Sy in eq.(43): m(h) occurs when yn41 equals an extreme value at horizon of uncertainty h:
eithel" @TN-‘rl or @TN-"-l + h:

2
N (@TNH - y§v+1)
h) = — 52 4
m(h) N+t T N (46)
N (@TNH +h—yy )2
h) = \~——S2 = 47
ma(h) Ni1oNT N+1 (47)
e m(h) is the greater of these two expressions:
m(h) = max [my(h), ma(h)] (48)
¢ Recall our economic understanding: actual inflation, yy 1, will exceed the LSE value, ¥y 1.
e Hence only consider regressions y; for which:
Un+1 < Yni1 (49)
e Hence eq.(48) becomes:
v (T —¥xer)’
N Q2 N+1~IN+1 : r ~r
S+ if h<2(yNiy— YNt
m(h) = N+1°N N+1 ( +1 + ) (50)

~r 2
N o2 Unath-yhi) .
\/N+ISN S n if h=>2 (l/fv+1 - 37TN+1)
e Thus m(h) may switch between the two functions and display discontinuity of slope.
e Recall: m(h) is the inverse of the robustness function.
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Figure 12: US inflation Figure 13: Robustness vs.

vs. year, 1961-1965, and least critical root mean squared er-

squares fit. ror for inflation 1961-1965.

2.5 Robustness: Results

§ Least squares fit: fig. 12: Maximal fidelity of quadratic function to the data.

§ Robust of LS fit: fig. 13.
e Trade off: Greater rbs. = greater critical RMS error, Sc.
e Zeroing: No robustness of estimated RMS error, S..
e What do the numbers mean?
oh=02at S, =0.1:
¥i N1 can err by as much as 0.2 (from info-gap model, eq.(41), p.10)
if we require that
S% 41 can err by no more than 0.1 (from performance requirement, eq.(44), p.10).
oh=0.7at Se = 0.3:
¥i N1 can err by as much as 0.7 (from info-gap model, eq.(41), p.10)

if we require that
5341 can err by no more than 0.3 (from performance requirement, eq.(44), p.10).
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§ Least squares and other fit: fig. 14.
e LS fit: Maximal average fidelity of quadratic function to the data.

e Other fit. Biased fidelity:

o Under-estimate, on average, of early data. Note: 1962 is almost exact!

o Over-estimate, on average, of late data.
o Over-estimate of future wrt historical trend. Maybe 1966 will be exact!

§ Robust of LS and other fit: fig. 15.
e Zeroing: “Other” zeros at greater S.: it’s nominal MSE is worse.
e Trade off: Both curves. ‘Other’ has greater (infinite) slope at zeroing value:

lower cost of robustness.

e Curve-crossing: preference reversal.

e What do the numbers mean?

oAt S, =0.1:

— ?Lother =0. ELS = 0.2. Forecast yni1 with yjy,1(¢) if Sc = 0.1 is adequate (or required).

oAt S, =0.3:

— Eother =0.8. ?LLS = 0.6. Forecast yn 1 with yj,,(c) if Sc = 0.3 is adequate (or required).
— Curve-crossing: preference reversal.

— Why forecast yy41 with 3}y (c) rather than with g}, (¢)?
- Fidelity to data and forecast is our measure of performance of a forecaster, eq.(44), p.10.
- Yn41(c) gives adequate fidelity (Sc = 0.3) over wider range of uncertainty than 74 (¢).
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3 Auto-Regression and Data Revision

§ Source: Yakov Ben-Haim, 2010, Info-Gap Economics: An Operational Introduction, Palgrave-Macmillan,
section 6.2.

3.1 The Problem of Data Revision

§ National statistical bureaus revise economic data over time.

e 1974:
o Real US GNP initially thought to have dropped 9.1% at annual rate between 3rd and 4th quarters.
o Largest drop since great depression.
o Final estimate, 20 years later: real GNP dropped 1.9% at annual rate.
o Not all revisions are this large.
o This revision large because of great economic turbulence then.
o Precisely in times of economic uncertainty we need accurate data.

e 2007-2009:
o Typical revisions of 1 or 2 percentage points.
o Table 2.

7ql | 792 | 793 | T7q4 | &ql
current 1.2 3.2 3.6 2.1 | =0.7
previous || 0.1 4.8 4.8 | —0.2 0.9
8g2 | 8q3 | 8qgq4 | 9ql 9q2
current 15| —-27| =54 | —-64| —1.0
previous || 2.8 | —0.5 | —6.3 | —5.5

Table 2: Current and previous estimates of real GDP: percent change from preceding period. 2007ql to 2009q2.
Seasonally adjusted at annual rates. Bureau of Economic Analysis, July 31, 2009.

3.2 Autoregression
§ N scalar data points: y = (y1, ...,yn)".
E.g. inflation data over N sequential years as in fig. 7 on p.8.

§ Regression:

Choose coefficients ¢ = (c1, ...,cs)? of an auto-regression of order .J for these data:
J
Yn = D CiYn-j (51)
j=1
= CTynfl,an (52)
where yn—1n-J = (Yn—1y -+ Yn—s) L.

§ Define mean squared error of the auto-regression (AR) of the data:
1 N

52(6) = N _J z (yn - CTynfl,an)Q (53)
n=J+1
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§ Our system model is the RMS error, S(c).

§ Performance requirement:
S(e) < Se (54)
§ The mean squared error can be expressed more compactly as:

1
N-—-J

S%(c) = y'Vy (55)
where V is defined as follows.
e ¢,, denotes the nth standard basis vector in RY: the column N-vector with a 1 in the nth location
and 0’s elsewhere.

e Now the mean squared error can be written:

1 a -T 4 T :
S%(c) = N7 Z eny—chen_jy (56)

n=J+1 j=1
)
1 al T, T
= —— > v &Gy (58)
N - Jn:J—‘rl
1 T al T
= Y > Gén |y (59)
N J (n:JJrl )
N
- Ly (60)
N-—J

This is eq.(55), with N x N matrix V from eq.(59) and N-vectors ¢, from eq.(57).
e IV depends on the regression coefficients ¢ but not on the data.

§ The AR coefficients that minimize the mean squared error are found by solving:

052

e Differentiating eq.(53) and rearranging one finds:

N N
Z YnYn—1,n—J = Z yn—l,n—Jyg—Ln—J c (62)

n=J+1 n=J+1

Z Y

which defines the J-vector z and the J x J matrix Y.
e The least squares (LS) auto-regression coefficients are:

c=Y 1z (63)

If the inverse matrix does not exist then a generalized inverse needs to be used.
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3.3 Uncertainty Model and Robustness Function
§ Best estimate of the data: ¥ = (7, ...,7n) .
E.g. ¥ might be current estimates of percent change in real GDP shown in table 2, p.13.
§ Info-gap model for asymmetric information:
Uh) = {y: ¥, —wnih <yn <y, +wn2h, n=1,....N}, h>0 (64)
e Uncertainty weights, w,; and wy,2, are non-negative.
o If y,, is certain, then wy; = 0 = wpa.
o If y,, is believed to be an underestimate then w,; = 0 and wys = 1.

o If y,, is believed to be an over estimate then w,; =1 and wy,2 = 0.
o If the uncertainty is symmetric then uncertainty weights w,1 = wns.

§ Robustness function, definition:

h(c, Se) = max {h : < max S(c)) < SC} (65)

yeU(h)

3.4 Policy Exploration

§ Example is based on 2nd-order auto-regressions, so J = 2 in eq.(51), p.13.
We use the percent change in the US GDP for 2007q1-2009q2 in table 2, p.13.

3.4.1 Symmetric Uncertainty

N

15

=]

|
INY

Robustness

0.5

% GDP Change

I
>

'07q1 '08q1 '09q1 6

3 4 5
Quarter Critical RMS error

Figure 16: Current estimates of  Figure 17: Robustness vs. crit-
US real GDP change vs. quar- ical RMS error of least squares
ter, and least squares auto-  auto-regression. Symmetric un-

regression. certainty.

§ The data.
e Fig. 16: GDP data, table 2, p.13, and 2nd-order least-squares auto-regression, ¢ from eq.(63).

e LS regression coefficients are ¢ = (0.9139, —0.4647)7.
e The RMS error of this regression is S(¢) = 2.49, so the AR misses the data, on average, by about 2.5

percentage points of GDP.
e This rather large error occurs mostly in last 5 quarters: data at ’08q2 and ’09q2 deviate from trend.

e Great uncertainty; no information on direction or magnitude of data revision.
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e Use info-gap model of eq.(64) with w,; = wpe =1forn=1, ..., N.

§ Robustness curve for LS AR ¢ with symmetric uncertainty, fig. 17.

e Zeroing at S(¢) = 2.49.

e Trade off.
e h(S. = 4) = 0.88: RMS error no larger than 4% is guaranteed with robustness of 0.88:

revisions as large as 0.88 percentage points can occur and the RMS error will not exceed 4%.

Robustness
Robustness

6 3 .4 5 6
Critical RMS error

3 . 4 5
Critical RMS error

Figure 18: Robustness vs. criti-  Figure 19: Robustness vs. criti-
cal RMS error with least squares  cal RMS error with least squares
(solid) and other (dash) auto-  (solid) and other (dash) auto-
regression.  Symmetric uncer-  regression.  Symmetric uncer-

tainty. tainty.

§ Robustness curves for non-LS AR with symmetric uncertainty, figs. 18 and 19.

e LS robustness curve (solid) reproduced from fig. 17.
e LS robustness curve zeros to left of non-LS by definition of least squares.

e Non-LS robustness curves steeper: lower cost of robustness.
e Curve crossing and preference reversal.
e Two foci of uncertainty:

o Statistical: seek small RMS.

o Info-gap: seek large robustness.

3.4.2 Asymmetric Uncertainty

§ Uncertainty and contextual information:

e Data in fig. 16, p.15.
e Current estimates at 2008q2 and 2009q2 are over-estimates and will be revised down.

e Use info-gap model of eq.(64). Choose uncertainty weights:
o wg2 = wig,2 = 0: 6th and 10th estimates cannot go up.
o we1 = wip,1 = 1: 6th and 10th estimates can go down.
o wy; = 1 for all other n and j (all other estimates can go either up or down).

e In summary:

wy, = [11111 01110
wy, = 11111 11111]
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uncertainty.

§ LS auto-regression, fig. 20:
e ¢ does not depend on the info-gap model, so ¢ is the same as before: ¢ = (0.9139, —0.4647)7.

e Furthermore, the RMS error of the LS regression same as before: S(¢) = 2.49.
e However, the robustness of ¢ does depend on the info-gap model, fig. 20.

o Zeroing: both curves reach S. axis at S(c).
o Asymmetric robustness curve higher due to greater info in asymmetric info-gap model.

§ Non-LS auto-regression, fig. 21:
e Solid curve is LS regression: the “Asym.” curve from fig. 20.
e Curve-crossing with non-LS regressions.
e Large robustness gain by the non-LS over LS regressions.
e Compare with figs. 18 and 19:
o Robustness gain is greater in current case.
o Added asymmetric information enhances robustness of LS regression.

o Further enhances the robustness of these non-LS regressions.



